Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    ISBN: 9783031042935
    Language: English
    Pages: 1 Online-Ressource(XI, 168 p. 24 illus., 17 illus. in color.)
    Edition: 1st ed. 2022.
    Series Statement: Studies in Computational Intelligence 1046
    Parallel Title: Erscheint auch als
    Parallel Title: Erscheint auch als
    Parallel Title: Erscheint auch als
    Keywords: Computational intelligence. ; Artificial intelligence.
    Abstract: Introduction -- Riemannian Geometry: A Brief Overview -- Elements of Information Geometry -- Probability Densities on Manifolds.
    Abstract: Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold. Manifold optimization methods mainly focus on adapting existing optimization methods from the usual “easy-to-deal-with” Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry. This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space. This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...