
Preface

This book has been written with several guiding principles in mind. First, the fo-
cus is on marginal models for categorical data. This is partly done because marginal
models for continuous data are better known, statistically better developed, and more
widely used in practice — although not always under the name of marginal models
— than the corresponding models for categorical data (as shown in the last chapter
of this book). But the main reason is that we are convinced that a large part of the
data used in the social and behavioral sciences are categorical and should be treated
as such. Categorical data refer either to discrete characteristics that are categorical
by nature (e.g., religious denominations, number of children) or result from a cate-
gorical measurement process (e.g., using response categories such as Yes versus No,
Agree versus Neither Agree nor Disagree versus Disagree). Treating categorical data
as realizations of continuous variables and forcing them somehow into models for
continuous data always implies making untestable assumptions about the measure-
ment process and about underlying continuous distributions. In general, an explicit a
priori model about the specific way in which the respondents ‘translate’ the continu-
ous information into a choice among discrete categories must be postulated, and the
underlying latent variable must be assumed to have a specific form, e.g., a normal
distribution. Violation of these largely untestable assumptions can seriously distort
the conclusions of an analysis. Therefore, it is very fortunate that during the last few
decades enormous progress has been made in the development of models that take
the categorical nature of the data as given without having to make strong untestable
assumptions. This monograph will apply and extend these insights into the area of
marginal modeling.

Our second guiding principle seems an obvious one: marginal models are needed
to answer important research questions. However, we state this principle explic-
itly because there is some controversy about it. This monograph will elaborate our
position extensively (throughout the book and more explicitly in the next and last
chapters), but a concise illustration of it runs as follows. We have two variables A and
B, which are measurements of the characteristic Political Preference at two instances,
e.g., political preference at time one (variable A) and two (B) for the same sample,
or the political preferences of husband (A) and wife (B) for a sample of married
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couples. To answer questions like Are there any net differences between time one
and two? or Are there any overall differences between the opinions of husbands and
wives?, one needs marginal modeling. Because the marginal distributions of A and B
do not come from independent samples, standard estimation and testing techniques
involving independent observations cannot be used. Comparison of the marginal dis-
tributions, taking the dependencies of the observations into account, is the specific
purpose of marginal modeling. This approach is often referred to as ‘unconditional’
or ‘population-averaged’ and contrasted with the conditional or subject-specific ap-
proach. In the latter one, the scores on B are regressed on A (or vice versa) and the
interest lies in the (expected) individual scores on B, conditional upon and as a func-
tion of the scores on A. In this sense, the interest in conditional analyses lies explicitly
in the nature of the dependencies in the data. In terms of longitudinal studies, one
focuses on the gross changes and transitions from A to B. The unconditional and the
conditional analyses will generally show different outcomes. It does not make much
sense to argue about what approach is better — they just answer different research
questions.

An important and widely used alternative way of handling dependencies in the
data is by means of random coefficient models, also referred to as multilevel or hi-
erarchical models. The (dis)similarities between the marginal and the random coef-
ficient approaches may be rather complex. Just a few main remarks will be made
here. In the next and especially the last chapter, a more extensive discussion will
be presented. In marginal modeling, the marginal distributions of A and B are being
compared, taking the dependencies in the data into account in the estimation and
testing procedures, without making any restrictive assumptions about the nature of
the dependencies. Many researchers tend to use random coefficient models for essen-
tially the same purposes. In terms of our little example, one can test and estimate the
differences between A and B while introducing random intercepts for each individual
(in the longitudinal example) or for each couple (in the husband-wife example), thus
explicitly taking the dependencies in the data into account. Generally (and certainly
for loglinear models), the outcomes of random coefficient models and corresponding
marginal models will not be the same. In the random coefficient model for the ex-
ample above, one investigates the differences between the marginal distributions of
A and B conditioning on subject (or couple) differences. In this sense, random coef-
ficient models belong to the class of conditional or subject-specific models. Further,
when introducing random coefficients, one introduces certain assumptions about the
distribution of the random coefficient and about the nature of the dependencies in the
data, assumptions that usually constrain the dependencies in the data and that may
or may not be correct. Finally, it is usually not so easy and straightforward to con-
strain random-effect models in such a way that these constraints yield the intended
marginal restrictions by means of which the intended hypotheses about the marginal
distributions can be tested.

The estimation method that will be used in this book is Maximum Likelihood
(ML) estimation, directly building upon the work of Lang and Agresti (Lang, 1996a;
Lang & Agresti, 1994). ML estimation for marginal modeling has many advantages,
but ML estimates are sometimes difficult to obtain. The algorithms proposed here at
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least partly overcome these problems. In an alternative general approach towards the
testing and estimation of marginal models, weighted least squares (WLS) procedures
are used. This approach is often called the GSK method, named after its develop-
ers Grizzle, Starmer and Koch (Grizzle, Starmer, & Koch, 1969; Landis & Koch,
1979). In general, WLS estimates are computationally simpler to obtain than ML
estimates, but have some statistical disadvantages. To overcome some of the compu-
tational difficulties of ML estimation without the disadvantages of WLS, Liang and
Zeger developed a quasi-likelihood procedure — the GEE (Generalized Estimating
Equations) method — for marginal-modeling purposes (Liang & Zeger, 1986; Dig-
gle, Heagerty, Liang, & Zeger, 2002). GEE provides consistent parameter estimates,
but faces problems regarding the efficiency and accuracy of the estimated standard
errors. A more extensive comparison between ML on the one hand, and WLS and
GEE on the other hand will be discussed in the last chapter. A third alternative to ML
might be Bayesian inference. Despite the important recent developments in Bayesian
methods, at least for categorical data analysis, its accomplishments and promises for
marginal modeling of categorical data are still too unclear to treat them here. It would
also go beyond the intended scope of this book.

This book has been written for social and behavioral scientists with a good back-
ground in social science statistics and research methods. Familiarity with basic log-
linear modeling and some basic principles of matrix algebra is needed to understand
the contents of this book. Nevertheless, the emphasis is on an intuitive understanding
of the methodology of marginal modeling and on applications and research exam-
ples. Parts that are statistically more difficult are indicated by ***: they are included
to provide a deeper insight into the statistical background but are not necessary to
follow the main argument.

The real world examples presented in this book are on the book’s website:

www.cmm.st

In addition, our Mathematica and R programmes for fitting marginal models can be
found there, as well as the user-friendly code needed to fit the models discussed in
the book. This is further discussed in Chapter 7, along with a presentation of some
other user-friendly programs for marginal modeling.

In the first chapter, we will explain the basic concepts of marginal modeling.
Because loglinear models form the basic tools of categorical data analysis, loglinear
marginal models will be discussed in Chapter 2. However, not all interesting research
questions involving marginal modeling can be answered within the loglinear frame-
work. Therefore, in Chapter 3 it will be shown how to estimate and test nonloglinear
marginal models. The methods explained in Chapters 2 and 3 will then be applied
in Chapter 4 to investigate changes over time using longitudinal data. Data resulting
from repeated measurements on the same subjects probably form the most impor-
tant field for the application of marginal models. In Chapter 5, marginal modeling
is related to causal modeling. For many decades now, Structural Equation Model-
ing (SEM) has formed an important and standard part of the researcher’s tool kit,
and it has also been well developed for categorical data. It is shown in Chapter 5
that there are many useful connections between SEM and marginal modeling for the
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analysis of cross-sectional or longitudinal data. The use of marginal models for the
analysis of (quasi-)experimental data is another important topic in Chapter 5. In all
analyses in Chapters 2 through 5, the observed data are treated as given, in the sense
that no questions are asked regarding their reliability and validity. All the analyses
are manifest-level analyses only. Marginal models involving latent variables are the
topic of Chapter 6. In the final Chapter 7, a number of important conclusions, discus-
sions and extensions will be discussed: marginal models for continuous data, alterna-
tive estimation methods, comparisons of marginal models to random and fixed-effect
models, some specific applications, possible future developments, and very impor-
tantly, software and the contents of the book’s website.

The very origins of this book lie in the Ph.D. thesis Marginal Models for Cate-
gorical Data (Bergsma, 1997), written by the first and supervised by the second (as
co-promotor) and third author (as promotor). Each of us has written in one form or
another all lines, sections, and chapters of this book, and we are all three responsible
for its merits and shortcomings, but at the same time we acknowledge the funda-
mental work done in the Ph.D. thesis. Grants from the Netherlands Organization for
Scientific Research NWO have made the Ph.D. project possible, as well as a subse-
quent postdoc project (NWO grant 400-20-001P) that contributed enormously to the
birth of this monograph.

Finally, we would like to thank several people and acknowledge their often crit-
ical but always constructive, helpful, and important contributions. Jeroen Vermunt,
Joe Lang, Antonio Forcina and Tamas Rudas contributed in many ways, in discus-
sions, in answering questions, in working together both on the aforementioned Ph.D.
thesis and on this book. John Gelissen, Steffen Kühnel, J. Scott Long, Ruud Luijkx,
and Michael E. Sobel commented on (large) parts of the manuscript. Andries van der
Ark contributed to the R routines for fitting the models. Matthijs Kalmijn provided
us with the Dutch NKPS data (Netherlands Kinship Panel; http://www.nkps.nl) used
in Chapters 2, 5, and 6. Marrie Bekker allowed us to use the data on body satisfac-
tion which are analyzed in Chapters 2 and 3. Finally, we thank Bettina Hoeppner for
providing us with the smoking cessation data from the Cancer Prevention Research
Center, University of Rhode Island (Kingston, RI), used in Chapter 5 (and we will not
insult the readers’ intelligence by assuming that they might think the aforementioned
people are in any way responsible for the book’s errors and shortcomings).

If it were not for the patience and enduring support of John Kimmel, editor at
Springer Verlag, these pages would never have appeared between covers.

Wicher Bergsma, Marcel Croon, Jacques Hagenaars




