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Loglinear Marginal Models

Loglinear models provide the most flexible tools for analyzing relationships among
categorical variables in complex tables. It will be shown in this chapter how to apply
these models in the context of marginal modeling. First, in Section 2.1, the basics of
ordinary loglinear modeling will be explained. The main purpose of this section is to
introduce terminology and notation and those aspects of loglinear modeling that will
be used most in the remainder of this book. It will be assumed that the reader already
has some familiarity with loglinear modeling and, therefore, the discussion will be
concise. An advanced overview of loglinear models is provided by Agresti (2002);
an intermediate one by Hagenaars (1990) and an introduction is given by Knoke and
Burke (1980) among many others. In Section 2.2, several motivating examples will
be presented showing what types of research questions can be answered by means
of loglinear marginal modeling. Finally, in Section 2.3, a general ML estimation
procedure will be discussed for testing and estimating loglinear marginal models.

2.1 Ordinary Loglinear Models

2.1.1 Basic Concepts and Notation

The most simple applications of loglinear models are to two-dimensional tables such
as Table 2.1, in which the self-reported Political Orientation (P) and Religion (R) of
a sample of 911 U.S. citizens is cross-classified. Table 2.1 contains the raw frequen-
cies as well as the vertical percentages. Variable P has seven categories, ranging from
extremely liberal (P = 1) to extremely conservative (P = 7). Religion has three cate-
gories: Protestant (R = 1), Catholic (R = 2) and None (R = 3). The joint probability
that P = i and R = j is denoted by πP

i
R
j . The number of categories of P is I = 7 and of

R is J = 3. For a first interpretation of the data, the vertical percentages in Table 2.1
are useful for comparing the conditional distributions of Political Orientation for the
three religious groups. It can easily be seen that the nonreligious people are more
liberal than the Protestants or the Catholics, but the differences between the latter
two groups are less clear. Even in this simple example, a more formal approach may
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Table 2.1. Political Orientation and Religion in the United States in 1993 (Source: General
Social Survey 1993)

Religion (R)
Political Orientation (P) 1. Protestant 2. Catholic 3. None Total
1. Extremely liberal 11 (1.8%) 2 (1.0%) 4 (4.4%) 17 (1.0%)
2. Liberal 49 (8.0%) 21 (10.1%) 23 (25.3%) 93 (10.2%)
3. Slightly liberal 79 (12.9%) 23 (11.1%) 19 (20.9%) 121 (13.3%)
4. Moderate 220 (35.8%) 96 (46.4%) 30 (33.0%) 346 (38.0%)
5. Slightly conservative 112 (18.3%) 36 (17.4%) 9 (9.9%) 157 (17.2%)
6. Conservative 119 (19.4%) 27 (13.0%) 4 (4.4%) 150 (16.5%)
7. Extremely conservative 23 (3.8%) 2 (1.0%) 2 (2.2%) 27 (3.0%)

Total 613 (100%) 207 (100%) 91 (100%) 911 (100%)

Note: The small Jewish and Other religious groups are omitted

be needed to separate true population differences from sampling fluctuations and to
arrive at a clear and parsimonious description of the data.

Saturated loglinear models decompose the observed logarithms of the cell prob-
abilities in terms of loglinear parameters without imposing any restrictions on the
data:

logπP
i

R
j = λ + λP

i + λR
j + λP

i
R
j .

The parameter λ is called the overall effect, λP
i is the effect of category i of P, λR

j is
the effect of category j of R, and λP

i
R
j is the two-variable effect of categories i and j

of P and R. Note that the term ‘effect’ is not intended to have a causal connotation
here: it simply refers to a parameter in the loglinear model and the term ‘effect’
is only used for convenience to avoid complicated and awkward phrases (see also
Chapter 5).

The loglinear model can also be represented in its multiplicative form as a direct
function of the cell frequencies or probabilities, rather than of the log cell frequencies
or log probabilities:

πP
i

R
j = τ τP

i τR
j τP

i
R
j .

The multiplicative parameters, denoted as τ , have nice interpretations in terms of
odds and odds ratios. However, formulas and computations are simpler in their log-
linear representations, and therefore we will mostly use the additive loglinear form of
the model. It is, of course, easy to switch between the two representations by means
of the transformation τ = eλ .

For the purposes of this book, a somewhat different notation than this standard
notation is often needed, because in marginal analyses it is generally necessary to
indicate from which marginal table a particular loglinear parameter is calculated. In
this new notation, the superscripts will indicate the relevant marginal table. In the
loglinear equation above, all parameters are calculated from table PR. Therefore, all
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parameters will get PR as their superscript. To indicate to which effect a particu-
lar symbol refers, the pertinent variable(s) will be indexed while the others get an
asterisk (∗) as their subscript. For example, parameter λP

i
R∗ (which is the same as

λ P
i in traditional notation) is the effect of category i of P calculated from table PR.

Throughout this book, we will generally use this ‘marginal’ notation, unless its use
becomes too cumbersome. In all cases, the meaning of the notation used will be made
clear or will be evident from the context.

The equation for the saturated loglinear model above now looks as follows in the
marginal notation:

logπP
i

R
j = λP

∗
R
∗ + λP

i
R
∗ + λP

∗
R
j + λP

i
R
j .

Without further restrictions, the λ -parameters are not identified. For example,
there are already as many unknown two-variable parameters λ PR

i j as there are known
cell frequencies. One common identification method is to use effect coding (as in
traditional ANOVA models), where for all effects the loglinear parameters sum to
zero over any subscript. Letting the ‘+’-sign in a subscript represents summation
over that subscript, e.g.

λP
+

R
∗ = ∑

i
λP

i
R
∗ ,

the following identifying restrictions are imposed:

λP
+

R
∗ = λP

∗
R
+ = 0

and
λP

i
R
+ = λP

+
R
j = 0 for all i, j .

Using effect coding, the parameters can be computed as follows:
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∗

R
∗ =

1
IJ
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.

The overall effect λP∗R∗ is in principle always present in a loglinear model. It is a
normalizing constant that guarantees that the estimated probabilities sum to 1 or the
estimated cell frequencies to sample size N. The overall effect equals the mean of the
log (expected) probabilities in the table, as can be seen from the way it is computed.
The one-variable effect λP

i
R∗ is the mean of the log odds (or logits) in the table that

have πP
i

R
l in the numerator. Roughly speaking, it indicates how much larger the prob-

ability is that someone belongs to P = i rather than to any of the other categories of
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P, on average among the religious groups. The one-variable effect λP∗R
j is the mean of

those log odds in the table that have πP
k

R
j in the numerator. It is especially important

in the context of this book to realize that generally the one-variable parameters do not
reflect the marginal distribution of P or R, but the average conditional distribution of
P and R, respectively. Restrictions on the one-variable parameters are therefore not
restrictions on the one-variable marginal distributions, but on the average conditional
one-variable distributions (and this extends analogously to multiway tables and mul-
tiway marginals). The one-variable effects are almost always included in a loglinear
model, unless one wants to explicitly test hypotheses about the average conditional
distribution of a particular variable, which is rarely the case. Finally, parameter λP

i
R
j

equals the mean of the logs of the odds ratios in the table which have πP
i

R
j in the nu-

merator. The two-variable parameters reflect the sizes of the log cell probability due
to the association between P and R, and indicate how much bigger or smaller a par-
ticular cell probability is than expected on the basis of the lower-order effects. The
variables P and R are statistically independent of each other if and only if λP

i
R
j = 0

for all i and j.
A second common method for obtaining an identified model is dummy coding,

where each parameter that refers to any of the reference categories of the variables is
set equal to zero. Using the first category of each variable as the reference category,
this method amounts to setting

λP
1

R
∗ = λP

∗
R
1 = 0

and
λP

i
R
1 = λP

1
R
j = 0 for all i, j .

The choice of the first category of each variable as the reference category is arbitrary,
and for each variable any of its categories could, in principle, be used as the reference
category.

It is important to note that the values of the parameters will differ from each
other depending on the kinds of identifying restrictions chosen: effect coding yields
different parameter values from dummy coding and, when using dummy coding,
selecting the first category as the reference category leads to different parameter
values than using the last category. However, whatever reference category is used,
the substantive interpretations in terms of what goes on in the table will remain the
same, provided the appropriate interpretation of the parameters is employed, taking
the nature of the chosen identifying restrictions into account. The values of the odds
and the odds ratios estimated under a particular model will be the same regardless
of the particular identification constraints chosen. In this book, we will use effect
coding unless stated otherwise. The two-variable parameter estimates for Table 2.1
are given in Table 2.2, using effect coding.

Like the vertical percentages in Table 2.1, the estimates λ̂ of the saturated loglin-
ear model presented in Table 2.2 clearly indicate that nonreligious people are more
liberal than Protestants or Catholics. But it is harder to discover a clear pattern for the
differences between the two religious groups, i.e., between Catholics and Protestants.
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Table 2.2. Political Orientation and Religion in the United States in 1993: Estimates λ̂ PR
i j for

Table 2.1. Effect coding is used; * significant at .05 level

Religion (R)
Political Orientation (P) 1. Protestant 2. Catholic 3. None
1. Extremely liberal −.20 −.52 .72*
2. Liberal −.57* −.04 .61*
3. Slightly liberal −.22 −.07 .29
4. Moderate −.17 .39* −.22
5. Slightly conservative .11 .36* −.47*
6. Conservative .52* .42* −.93*
7. Extremely conservative .52* −.54 .01

A comparison of particular restricted, nonsaturated models might provide some bet-
ter insights into what is going on.

Nonsaturated loglinear models are usually tested by means of two well-known
test statistics: the likelihood ratio test statistic

G2 = −2N∑
i

pi log
π̂i

pi

and Pearson’s chi-square test statistic

X2 = N ∑
i

(pi − π̂i)2

π̂i
.

If the postulated model is true, these test statistics have an asymptotic chi-square dis-
tribution. The degrees of freedom (df) equal the number of independent restrictions
on the nonredundant loglinear parameters (often the number of nonredundant param-
eters that are set to zero) or, equivalently, to the number of independent constraints on
the cell probabilities. In many circumstances, G2 can be used to obtain a more pow-
erful conditional test by testing a particular model, not (as implied above) against the
saturated model, but against an alternative that is more restrictive than the saturated
model (but less restrictive than the model to be tested). Given that interest lies in a
model M1 with df1 degrees of freedom, a conditional test requires that an alternative
hypothesis M2 is considered with df2 degrees of freedom that contains model M1 as
a special case, i.e., M1 ⊂ M2. The conditional test statistic is then defined as

G2(M1|M2) = G2(M1)−G2(M2)

and has an asymptotic chi-square distribution with df = df1 −df2 if M1 is true. This
conditional testing procedure is valid only under the condition that the more general
model M2 is (approximately) valid in the population.

To indicate (non)saturated hierarchical loglinear models, use will be made of the
standard short-hand notation. This short-hand notation can be most easily described
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in terms of the standard, nonmarginal notation for the λ parameters. In this short-
hand notation then, a loglinear model is denoted by the superscripts of all its highest
order interaction terms. Because of the hierarchical nature of the model, all lower-
order effects that can be formed from these superscripts are also included in the
loglinear model. For Table 2.1,the saturated model is denoted as model {PR} and
the independence model with λP

i
R
j = 0 as {P,R}.

The hypothesis of statistical independence between P and R in Table 2.1 is
definitely not a viable hypothesis: likelihood ratio chi-square G2 = 54.9, df = 12
(p = .000; Pearson chi-square X2 = 57.4). However, a partial independence model
can be formulated in which the conditional probability distributions of Political Ori-
entation are the same for Protestants and Catholics, but different for the nonreli-
gious people. In loglinear terms, this form of partial independence is identical to
the restriction that the two-variable λ ’s are the same for Protestants and Catholics:
λ PR

i 1 = λ PR
j 2 for all i = j. Several programs are available for handling such restrictions,

e.g., Vermunt’s free software LEM (Vermunt, 1997a). The test results are G2 = 15.0,
df = 6 (p = .024; Pearson chi-square X2 = 13.8). This is a somewhat inconclusive
result, the interpretation of which strongly depends on the (arbitrarily) chosen sig-
nificance level of .05 or .01. Assuming that the partial independence model is valid
in the population, independence model {P,R} can be tested conditionally against this
less restricted alternative: G2 = 54.9−15.0 = 39.9, df = 12−6 = 6, p = .000. The
complete independence model definitely has to be rejected in favor of the partial
independence model.

A more powerful investigation of what goes on in the table might be obtained by
explicitly taking into account the ordered nature of variable P. There are essentially
three partly overlapping ways in which we can deal explicitly with loglinear mod-
els for ordered data. If the ordered nature of the data is considered to be the result
of strictly ordinal measurement, it makes sense to assume (weakly) monotonically
increasing or declining relationships between the variables and impose inequality re-
strictions on the loglinear association parameters. If the ordered data are considered
as interval-level data, fixed numerical scores can be assigned to the interval-level
variables and the loglinear parameters may be linearly restricted to obtain linear re-
lationships in the loglinear models. In the third approach, the scores for the variables
are not fixed, but linear relationships are assumed to be true and the variable scores
are estimated in such a way that the relationships in the loglinear model will be lin-
ear. An extensive literature on loglinear modeling of ordinal data exists (see Croon,
1990; Vermunt, 1999; Hagenaars, 2002; Clogg & Shihadeh, 1994).

By way of example, variable P in table PR may be considered as an interval-level
variable with fixed scores Pi and R may be treated as nominal-level variable, resulting
in an interval by nominal loglinear model (also called a column association model).
The model has the form

logπP
i

R
j = λP

∗
R
∗ + λP

i
R
∗ + λP

∗
R
j + PiαR

j

in which the two-variable effect λP
i

R
j is replaced by the more parsimonious term

PiαR
j . In terms of ordinary regression analysis, the term αR

j is similar to a regression
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coefficient: in this case, one for each category of R, and the scores Pi define the
independent interval-level variable X . To maintain the identifying effect coding re-
strictions for the restricted λP

i
R
j effects, the scores Pi must sum to 0 (we will use the

equal unit distance interval scores −3,−2, · · · ,2,3) and we need ∑ j αR
j = 0. This lin-

ear model implies that the log odds of belonging to religious group j rather than j′
increase or decrease linearly with an increasing score on P. Or formulated the other
way around, the log odds of belonging to category i of P rather than i+1 are system-
atically larger (or systematically smaller) for R = j than for R = j′, where these log
odds differences between religious groups j and j′ are the same for all values of i:

αR
j −αR

j′ = log
πP

i
R
j /πP

i+1,
R
j

πP
i,

R
j′/πP

i+1,
R
j′
.

As can be seen from this formula, the odds ratio on the right-hand side has the same
value for all i. The difference αR

j −αR
j′ indicates how much higher the log odds of

scoring one category higher on the political orientation scale is for people of religion
j than for people of religion j′. Since there are three religious denominations here,
there are three relevant (and two independent) differences of this kind.

For the data in Table 2.1, the ordinal by nominal model fits well: G2 = 14.4,
df = 10 (p = .16, X2 = 15.16). The estimates of the regression coefficients are
α̂R

1 = .226, α̂R
2 = .096, and α̂R

3 = −.322, which shows that the Protestants are
the most conservative and the nonreligious people are the most liberal, while the
Catholics occupy an intermediate position very close to the Protestants. As explained
below, for the fitted sample data, the odds of scoring one category higher on the
liberal-conservative scale is just 1.14 times higher for Protestants than for Catholics,
but 1.73 times higher for Protestants than for nonreligious people, and, finally, 1.52
times higher for Catholics than for nonreligious people. Coefficient 1.14 for the
comparison Protestants-Catholics is computed as follows: 1.14 = exp(.226− .096);
using the estimated standard errors of α̂R (not reported here) its 95% confidence
interval (CI) equals [1.01,1.29]; the coefficient for the comparison of Protestants-
nonreligious is 1.73 = exp(.226+ .322) and its CI equals [1.45,2.06]; the coefficient
for the comparison Catholic-nonreligious is 1.52 = exp(.10 + .32) and its CI equals
[1.25,1.84]. The difference in political orientation of Catholics and Protestants is not
very large and the reported confidence interval for the pertinent odds ratio almost
includes the no difference value of 1. To test whether the (linear) difference between
Catholics and Protestants is significant, the same interval by nominal model can be
defined, but now with the extra restriction that αR

1 = αR
2 . The test outcomes for this

model are G2 = 18.8, df = 11 (p = .07, X2 = 18.84). In this restricted interval by
nominal model, α̂R

1 = α̂R
2 = .17 and α̂R

3 =−.34. On the basis of the unconditional test
outcome against the alternative hypothesis that the saturated model is true (p = .07),
one might decide to accept the restricted model and conclude that Protestants and
Catholics have the same political orientation. The more powerful conditional test for
the thus restricted model against the alternative hypothesis that the original interval
by nominal model holds yields G2 = 18.8−14.4 = 4.4, df = 11−10 = 1 (p = .04).
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Table 2.3. Political Orientation, Religion, and Opinion on teenage birth control in the United
States in 1993 (Source: General Social Survey 1993)

Opinion on Teenage Birth Control (B)

1. Strongly 2. Agree 3. Disagree 4. Strongly
agree disagree

Religion (R) 1 2 3 1 2 3 1 2 3 1 2 3

Pol. or. (P) 1 5 1 3 4 0 0 0 0 1 2 1 0
2 18 6 10 15 6 10 9 6 3 7 3 0
3 24 7 7 29 11 7 18 5 4 8 0 1
4 61 31 13 69 30 7 54 20 4 36 15 6
5 19 11 5 32 11 3 37 8 0 24 6 1
6 13 6 2 31 8 1 32 6 0 43 7 1
7 5 0 1 5 1 0 4 0 1 9 1 0

At the 5% significance level, the unrestricted interval by nominal model is accepted
but its restricted version is rejected.

From all these test outcomes, it can be clearly concluded that first, there is no
reason to reject the linear nature of the relationships in the interval by nominal
model; second, that nonreligious people are definitely more liberal than Catholics or
Protestants, and third, that the differences in political orientation between Catholics
and Protestants are small. For the time being, it may be accepted that Catholics are
slightly more liberal than Protestants but new data are needed to conform this out-
come. Suspension of judgement is the best option here (Hays, 1994, p. 281).

2.1.2 Modeling Association Among Three Variables

Basic loglinear modeling for two-way tables can easily be extended to tables of much
higher dimensions. As a simple example, the data in three-way Table 2.3 will be
used to investigate how the two variables dealt with so far, Religion (R) and Political
Orientation (P), affect opinion on teenage Birth Control (B). Variable B has K = 4
categories, ranging from strongly agree to strongly disagree.

For the three-dimensional table PRB, saturated loglinear model {PRB} decom-
poses the log probabilities as follows:

logπP
i

R
j
B
k = λP

∗
R
∗

B
∗ + λP

i
R
∗

B
∗ + λP

∗
R
j
B
∗ + λP

∗
R
∗

B
k + λP

i
R
j
B
∗ + λP

i
R
∗

B
k + λP

∗
R
j
B
k + λP

i
R
j
B
k .

Note that here the superscripts of the λ parameters are all PRB, indicating that the
parameters refer to table PRB rather than to table PR from the previous subsec-
tion. Where the highest order effect parameter in the previous subsection was a two-
variable effect, now we have also a three-variable parameter λ PRB

i j k that indicates to
what extent the conditional associations between any of the two variables vary among
the categories of the third variable.
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The effect coding identifying restrictions are

λP
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+
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R
+
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+
R
j
B
k = 0

for all i, j, and k. Because there are sampling zeroes in the observed table PRB, the
sample values of the loglinear parameters of the saturated model are either plus or
minus infinity or undefined.

In general, as indicated above, the loglinear effects pertaining to the same vari-
ables are different when calculated in different (marginal) tables; even their signs
may be different. For the data in Table 2.3, we have λ̂P

1 = −1.65, λ̂P
1

R∗ = −1.50, and
λ̂P

1
R∗B∗ = −∞ (minus infinity). All three parameters pertain to the distribution of P

and represent the effect of the first category of P, but are calculated in the marginal
tables P, PR, and the full table PRB, respectively (and assuming saturated models
for the pertinent tables). Parameter λP

1 reflects the cell size of P = 1 in the univariate
marginal distribution of P; parameter λP

1
R∗ indicates the cell size of P = 1 on average

in the J conditional distributions of P in table PR; and parameter λP
1

R∗B∗ mirrors the
average cell size P = 1 in the J×K conditional distributions of P in table PRB. The
two-variable parameters for table PRB are now partial coefficients indicating the di-
rect relationship between two variables on average within the categories of the third
variable, in this way controlling for the third variable.

Table 2.4 contains the test outcomes of a few relevant hierarchical loglinear mod-
els for Table 2.3 concerning the influence of P and R on B. The models in Table 2.3
can also be seen as logit models for the effects of P and R on B (Agresti, 2002,
Section 8.5). The models are again represented in the usual short-hand notation by
means of which hierarchical models are indicated by their highest order interactions,
implying the presence of all pertinent lower order effects. The second column in
Table 2.3 gives an interpretation of the model in terms of (conditional) independence
relations (⊥⊥) or the absence of interaction terms. The final four columns summarize
the results of the testing procedures.

In the last row of Table 2.4, the results of the no three-factor interaction model
are given. The no three-factor interaction model has the form

logπP
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∗
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∗
R
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As can be seen in Table 2.4, this model {PR,PB,RB} fits the data well. However, the
estimated (and observed) table is sparse, which may invalidate the approximation
of the chi-square distribution. It is not certain whether the reported p-value for the
model is correct. One may become more confident that the model can be accepted
by observing that the value of Pearson’s chi-square statistic is 35.2, which is not too
different from G2. The no three-factor interaction model will be accepted here and
used as an alternative hypothesis for testing more parsimonious models: especially
with sparse tables, conditional tests more readily approximate the theoretical chi-
square distribution and are in many circumstances more powerful than unconditional
tests.
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Table 2.4. Goodness of fit of various hierarchical loglinear models for Table 2.3

Model Interpretation G2 df p-value X2

1. {PR,B} PR ⊥⊥ B 120.2 60 .000 105.3
2. {PR,RB} P ⊥⊥ B|R 95.6 54 .000 84.7
3. {PR,PB} R ⊥⊥ B|P 53.7 42 .107 46.8
4. {PR,PB,RB} No 3-factor interaction 39.2 36 .328 35.2

The model in which neither P nor R have an effect on B does not fit the data
(model 1 in Table 2.3). The same is true for conditional independence model 2 in
which P has no direct influence on B, but R has. At first sight, conditional indepen-
dence model 3, in which Religion has no direct effect on opinion of teenage Birth
Control, provides an acceptable fit to the data (p = .107). However, testing this model
against the no three-factor interaction model yields G2 = 14.7 with df = 6 (p = .025).
This conditional test has more power to detect the (possibly small) effects of R on
B in the population than the corresponding unconditional test. Although the conclu-
sion regarding p = .025 again strongly depends on the chosen significance level .01
or .05, we will proceed cautiously and at least for the time being accept the possibil-
ity of (small) effects of R on B in the population. Model 3 will be rejected in favor of
the no three-factor interaction model 4.

In the no three-factor interaction model 4, the conditional association between P
and B given R is described by the 28 parameters λP

i
R∗B

k and the conditional association
between R and B given P is described by the 12 parameters λP∗R

j
B
k . A simpler descrip-

tion of the models might be obtained by taking the ordered character of variables
P and B into account. More precisely, variable B will be treated as an interval-level
variable with scores Bk = −1.5,−.5,+.5,+1.5 and also variable P will be consid-
ered (as before) as an interval-level variable with scores Pi = −3,−2, · · · ,+2,+3.
Further, the following restrictions will be applied:

λP
i

R
∗

B
k = ϑPiBk

λP
∗

R
j
B
k = ργR

j Bk .

These restrictions are similar to the ones used above in the interval by nominal model
for Table PR, but a slightly different notation than above is employed to indicate
somewhat different aspects of models for ordered data. The resulting loglinear model
has the form

logπP
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∗ + ϑPiBk + ργR

i Bk . (2.1)

The parameter ϑ is a kind of regression coefficient for the linear effect of P on B,
and ργR

j is the regression coefficient for the linear relationship between R and B, one
for each category of R. One might also say that ρ is the regression coefficient and
consider γR

j as scores to be estimated for R, given a linear relationship between R
and B. In order to guarantee model identification, and more specifically to guarantee
identification of the product ργR

j , the additional constraint ∑ j γR
j = 0 is imposed.
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If ρ and γR
j have to be identified separately, which is not necessary here for our

purposes, the variance of the estimated scores γR
j has to be fixed, e.g., by means of

the restriction ∑ j(γR
j )2 = 1.

According to this model, the direct relationship between P and B is linear in the
sense that the log odds of choosing category k of B rather than k′ increase (or de-
crease) linearly with increasing values for P, or vice versa, but less appropriate here
given the assumed ‘causal’ order of the variables: the log odds of choosing category
i of P rather than i′ increase (or decrease) linearly with increasing values for B. The
relation between R and B is linearly restricted in the sense of the interval by nominal
model discussed in the previous section: for two religions j and j′, there is a linear
relationship between Religion and the opinion about teenage Birth Control. One way
to clarify the meanings of the effects of P and R on B, i.e., of the consequences of
having different scores on P or R for the scores on B is the following:

ϑ(Pi −Pi′) = log
πP

i
R
j
B
k /πP

i
R
j
B
k+1

πP
i′

R
j
B
k /πP

i′
R
j
B
k+1

(2.2)

ρ(γR
j − γR

j′) = log
πP

i
R
j
B
k /πP

i
R
j
B
k+1

πP
i

R
j′

B
k /πP

i
R
j′

B
k+1

. (2.3)

The odds ratio on the right-hand side of ( 2.2) is the conditional odds ratio indicating
the direct relationship between P and B for R = j. It turns out to be the same for all
values of j, a necessary consequence of the no three-variable-interaction model in
(2.1). Further, the conditional odds ratio on the right-hand side of (2.3) indicating the
direct relationship between R and B for P = i is the same for all values of i. The left-
hand side element ρ(γR

j − γR
j′) shows how much higher the log odds of scoring one

category higher on B is for people in category j of R than for people in category j′
of R, conditionally on P. The left-hand side element ϑ(Pi −Pi′) indicates how much
higher the log odds of scoring one category higher on B is for people in category i of
P than for people in category i′ of P, conditionally on R. The linearly restricted model
for the direct relation between P and B is called an ‘interval by interval’ or a ‘linear
by linear’ model, and also a ‘uniform association model’, because all local partial
odds ratios for the direct relation between P and B are the same, their logarithm
being ϑ . In terms of the original lambda parameters,

ϑ = λP
i

R
∗

B
k −λ P R B

i+1 ∗ k −λ PR B
i ∗ k+1 + λ P R B

i+1 ∗ k+1,

for all values of i and k.
Testing model (2.1) yields G2 = 57.7 with df = 57 (p = .449, X2 = 52.7); testing

it against the no three-factor interaction model, it is found G2 = 57.7−39.2 = 18.5
with df = 57− 42 = 21 (p = .617). There is no reason to reject this very parsimo-
nious model for describing the association structure between the three variables. The
relevant estimated effects are

ϑ̂ = .155,

ρ̂γR
1 = .182,
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ρ̂γR
2 = .026,

ρ̂γR
3 = −.208.

The estimated direct linear effect of Political Orientation on the opinion on
teenage Birth Control is significant (estimated standard errors not reported here) and
in the expected direction: the more conservative one is, the more one is opposed to
teenage birth control. The (significant) direct effects of Religion indicate that nonreli-
gious people are less opposed to birth control than the Protestants with the Catholics
in an intermediate position.

The effects of Political Orientation on the opinion on teenage Birth Control are
much stronger than the effects of Religion. One way to see this clearly is to estimate
the maximum effects for the variables, that is, the largest (log) odds ratios that can
be obtained in the pertinent tables. Because of the linear relationship and the number
of categories of the variables, the log of the maximum odds ratio for the effect of
P on B turns out to be 6× 3× ϑ̂ = λ̂P

1
R∗B

1 − λ̂P
1

R∗B
4 − λ̂P

7
R∗B

1 + λ̂P
7

R∗B
4 = 6× 3× .1548 =

2.786. The corresponding maximum odds ratio equals exp(2.786) = 16.22. Similar
computations lead to a maximum (log) effect of R on B of 1.169 (= 3× (.182−
(−.208) and a corresponding odds ratio of 3.220: the effect of P on B is five times
stronger than the effect of R on B.

2.2 Applications of Loglinear Marginal Models

The loglinear models applied in the previous section to analyze a joint probability
distribution can also be employed for jointly analyzing two or more marginal dis-
tributions. In this section, several concrete research problems and designs will be
discussed that require marginal-modeling methods, and for which loglinear marginal
models are very useful to answer the pertinent research questions. Real-world exam-
ples and data will be used to illustrate these kinds of research questions and the ways
they can be translated into the language of loglinear modeling. Maximum likelihood
estimates of the parameters and significance tests for these examples will be given,
along with their substantive explanation. In the last section, a general algorithm will
be presented to obtain maximum likelihood estimates for loglinear marginal models.
The contents of some parts of this section will be more demanding from a statistical
point of view and are indicated by ***.

2.2.1 Research Questions and Designs Requiring Marginal Models

As discussed before, marginal modeling is about the simultaneous analyses of mar-
ginal distributions where the different marginal distributions involve dependent ob-
servations, but where the researcher is in principle not interested in the nature of the
dependencies. As the remainder of this book will show, this is a research situation
that actually occurs a lot in practice. For a simple concrete example, let us turn to
the analysis of family data. Family data are of interest for social scientists studying
such diverse topics as social mobility, political change, changing family relations or
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the societal role of generational differences. In this respect, social scientists want to
compare family members, wives and husbands, children and parents, and sisters and
brothers regarding their political preferences, social and occupational status, educa-
tion, religious beliefs, etc. These comparisons usually involve comparing dependent
marginal tables, not only one-way, but also higher-way marginal tables that involve
dependent observations. For example, clustered family data are needed to answer
concrete research questions such as

• Are the relative direct influences of religion and social class on political prefer-
ence the same for the children and their parents?

• Is the agreement in attitudes between fathers and sons of the same size and nature
as between mothers and their daughters, and is the agreement less in pairs of
opposite sex, i.e., between fathers and their daughters or between mothers and
their sons?

• Are sisters more like each other than sisters and brothers?

Standard analysis techniques that ignore the dependencies in the data, i.e., ignore the
hierarchical or clustered nature of the data are not appropriate here. Especially if an
investigator wants answers to these research questions without at the same time want-
ing to make assumptions about the nature of the dependencies in the data, marginal-
modeling methods provide an excellent way to analyze the family data reckoning
with the fact that the observations are dependent.

Marginal modeling is also needed to answer particular kinds of research ques-
tions that make use of data that are seemingly not clustered. This happens, for in-
stance, when a political scientist has conducted a one-shot cross-sectional survey
based on simple random sampling, in which respondents are asked to state their de-
gree of sympathy for different political parties on a five point scale. To answer the
question of whether the distributions of the sympathy scores are the same for all po-
litical parties, standard chi-square tests cannot be used because the comparisons of
the several one-variable distributions pertain to the same respondents. The data are
actually clustered within individuals given the research question of interest, despite
the cross-sectional design and the simple random sampling scheme.

Many other research questions in similar situations require marginal modeling.
The same political scientist may also want to measure political interest by means of
several items in the form of seven-point rating scales. These items are supposed to
form a summated (Likert) scale. In its strictest form, it is assumed in Likert scaling
that the items are parallel measurements of the same underlying construct, having
independently distributed error terms with identical error variances (for a more pre-
cise technical definition of parallel measurements, see Lord & Novick, 1968). This
strict measurement model implies that all marginal distributions of all items are the
same, as are all pairwise associations. Again, marginal modeling is needed to test
such implications.

In the following two subsections of this chapter, empirical illustrations will be
provided for exactly the above kinds of research topics, showing how to translate
these questions into the language of loglinear modeling. In the next chapter, the same
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data and general research questions will be used but then formulated in terms of
nonloglinear marginal models.

2.2.2 Comparing One Variable Distributions

Comparing One Variable Distributions in the Whole Population

To gain a practical insight into the nature of marginal modeling, the best starting
point is the comparison of a number of simple one-way marginals. Our example
concerns a study into the way people perceive their body. A group of 301 university
students (204 women and 97 men) answered questions about their degrees of satis-
faction with different parts or aspects of their body by completing the Body Esteem
Scale (Franzoi & Shields, 1984; Bekker, Croon, & Vermaas, 2002). This scale con-
sisted of 22 items (not counting the items concerning gender-specific body parts),
seven of which will be considered here. These seven items loaded highest on the first
unrotated principal component, with loadings higher than .70. Principal component
analysis was used to discover whether the separate expressions of satisfaction with
the different body aspects can be seen as just an expression of the general underlying
satisfaction with the body as a whole or whether more underlying dimensions are
needed (for the interested reader: two rotated factors were needed to explain the cor-
relations among all the 22 items, one having to do with the general appearance of the
body and the other with the satisfaction with the parts of one’s face; the items chosen
here all belong to the first factor). Such dimensional analyses tell the researcher how
strongly satisfaction on one particular item goes together with satisfaction with other
parts or aspects of the body. However, even if a correlation between two particular
items is positive (and it turned out that the correlations among all 22 items had pos-
itive values), it does not follow automatically that the respondents react in the same
way to these items in all respects. Despite the positive correlation, people may be
much more satisfied on average with one part of their body than with another, or
the disagreement among the respondents regarding the satisfaction with one bodily
aspect may be much larger than the disagreement with another one. Such differences
may be important and may reveal, in addition to correlational analyses, relevant de-
tails about how the body is perceived. To investigate these kinds of differences, one
must compare the overall reactions of the respondents to the different body parts, in
other words, compare the marginal distributions. For the selected seven items, the
marginal distributions are shown in Table 2.5 (the complete seven-way table can be
found on the website mentioned in the last chapter). The response categories are 1 =
very dissatisfied; 2 = moderately dissatisfied; 3 = slightly satisfied; 4 = moderately
satisfied; and 5 = very satisfied.

The items in Table 2.5 will be denoted by Ii: I1 refers to item Thighs, I2 to Build,
etc. To see whether the seven response distributions differ significantly from each
other, one could start from the marginal homogeneity model (MH) that states that
the marginal distributions of the variables Ii are the same for all i, i.e.,

πI1
i

I2
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I3
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I4
+

I5
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Table 2.5. Body Esteem Scales

1. Thighs 2. Body
Build

3.
Buttocks

4. Hips 5. Legs 6. Figure 7.
Weight

MH

1 22 10 22 22 18 15 20 21.12
2 67 45 59 51 57 45 48 52.08
3 79 78 93 88 79 70 74 76.32
4 105 127 95 111 110 140 104 110.56
5 28 41 32 29 37 31 55 40.91
Total 301 301 301 301 301 301 301 301.00

Mean 3.17 3.48 3.19 3.25 3.30 3.42 3.42 3.33
SD 1.099 1.010 1.093 1.075 1.093 1.024 1.152 1.124

Notes: See text for explanation. Source: Franzoi and Shields, 1984

for all i. When it does not cause any misunderstandings, a shorter and simpler no-
tation will be used, omitting the variables over which the multidimensional table is
marginalized:

πI1
i = πI2

i = πI3
i = πI4

i = πI5
i = πI6

i = πI7
i .

To test this MH model, application of the standard chi-square test to Table 2.5 is not
appropriate since it is not an ordinary two-way contingency table. The columns of
table SI (Satisfaction × Item) contain the marginal score distributions for the seven
items that are all based on the same sample of respondents. Nevertheless, we will
often refer to such a table as an SI table for the sake of obtaining a simpler notation
and a much simpler indication of relevant models. The MH model for Table 2.5 must
be fitted using the marginal-modeling methods that are explained in the following
section (and implemented in the programs described in the last chapter). The MH
model turns out to fit badly (G2 = 55.76, df = 24, p = .000, X2 = 45.42) and it must
be concluded that the seven marginal item distributions are not identical.

To investigate the differences among the marginal distributions, several paths
may be followed. First, adjusted or standardized residual frequencies can be cal-
culated comparing the observed and expected frequencies. The expected frequency
distribution for all items under marginal homogeneity is also reported in Table 2.5
in the last column labeled MH. Note that the estimated frequencies under MH are
not simply the average of the seven column frequencies. Among other things, the
adjusted residual frequencies (not reported here) clearly indicate that more people
are dissatisfied with their Thighs and Buttocks than estimated under the MH model,
while more people are satisfied with their general Build than expected under MH.
None of the residuals for Legs were significant.

Another way of investigating the differences among the marginal item distribu-
tions is to compare certain aspects of the marginal item distributions, e.g., the means
or standard deviations. These two characteristics are reported in the last two rows



38 2 Loglinear Marginal Models

Table 2.6. Body Esteem Scales. Loglinear parameters λ̂ SI
i j and their standard errors for data in

Table 2.5

1. Thighs 2. Build 3. Buttocks 4. Hips 5. Legs 6. Figure 7. Weight
1 .181 (.123) -.482 (.167) .167 (.109) .196 (.102) -.013 (.121) -.010 (.120) .051 (.141)
2 .213 (.090) -.060 (.109) .072 (.095) -.045 (.092) .059 (.096) -.083 (.102) -.155 (.107)
3 -.039 (.085) .074 (.090) .110 (.085) .084 (.078) -.032 (.086) -.058 (.088) -.139 (.099)
4 -.096 (.069) .220 (.070) -.210 (.073) -.026 (.061) -.042 (.070) .294 (.067) -.140 (.079)
5 -.258 (.100) .249 (.092) -.139 (.098) -.208 (.096) .028 (.093) -.054 (.100) .383 (.098)

of Table 2.5. However, their comparisons involve nonloglinear marginal models and
will be dealt with in the next chapter.

Finally, within the loglinear context, the differences among the marginal item
distributions can be described by means of the loglinear parameters. Essentially, the
two-variable parameters and their standard errors in saturated model {SI} applied
to Table 2.5 are estimated, but then in the correct way by taking the dependencies
among the observations into account by means of marginal model estimation proce-
dures (see also below). The results in terms of the two-variable parameters λ̂S

i
I
j are

reported in Table 2.6, with their respective standard errors between parentheses.
The λ̂S

i
I
j estimates provide a detailed description of the differences among the

marginal distributions. In agreement with the adjusted residuals, they show that there
is a relative overrepresentation of dissatisfied people for Thighs and Buttocks (and
a corresponding underrepresentation of satisfied people); the opposite tendency is
noted for Build. Satisfaction with Legs resembles the average (log)distribution the
most. Relative outlying cell frequencies can be seen for Figure and Weight, where
the categories moderately satisfied and very satisfied, respectively, are comparatively
strongly overrepresented.

To gain further insight into the properties of marginal modeling, it is useful to
compare these results with analyses directly applied to the data in Table 2.5, in-
correctly ignoring the dependencies among the column distributions. Table 2.5 is
then treated as if it were a normal SI two-way table and the equality of the item
distributions is tested by applying (inappropriately) the standard chi-square test for
independence (model {S, I}) directly to this table. The test results are G2 = 45.50 for
df = 24 (p = .005, X2 = 46.41). The test statistic G2 for the independence hypothesis
is smaller than G2 for MH obtained above which had the value 55.77 and the same
degrees of freedom. This was to be expected. The item distributions in Table 2.5 are
the result of repeated measurements of the same 301 respondents. As is well-known
for repeated measurements, if the dependencies among the repeated measurements
are positive, then in general, the standard errors of the estimates will be smaller than
for independent observations and consequently test statistics will be larger (Hage-
naars, 1990, p. 205-210). For negative dependencies, the situation will be reversed:
larger standard errors and smaller test statistics. Because the body items here all cor-
relate positively, the MH test will have more power to detect the differences in the
population than the (inappropriately applied) independence test.
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As implicitly indicated above, it is important to note explicitly that the two sets
of expected frequencies estimated using maximum likelihood methods under the in-
dependence hypothesis (as defined above, treating the data incorrectly as coming
from independent observations) and under MH will generally not be the same. The
estimated frequencies for each item distribution under MH in Table 2.5, Column
MH result in the following proportions for the satisfaction categories 1 through 5:
.070, .173, .254, .367,and .136. However, the corresponding estimated proportions
stemming from the (inappropriate) application of model {S, I}) directly to Table 2.5
are: .061, .177, .266, .376,and .120. The latter distribution simply results from
adding all cell frequencies in a particular row of Table 2.5 and dividing it by the total
number of observations (here: 7× 301). In other words, the inappropriate indepen-
dence model {S, I} reproduces the observed marginal distribution of S since the mar-
ginal distribution of S is a sufficient statistic for model {S, I} when the observations
are independent. However, this is not true when independence in Table 2.5 is tested
in the correct way by means of the model. Note that the MH model has no simple
sufficient statistics like the ordinary nonmarginal independence model has. Ignoring
the dependencies between the observations for the different items may not only dis-
tort the chi-square values, but also the estimates of the item distributions. Finally,
regarding the application of saturated model {SI} directly to Table 2.5, it does not
matter whether we compute the λ̂S

i
I
j-estimates just from Table 2.5 or use marginal-

modeling procedures. The two methods yield the same values for the λ̂S
i

I
j estimates,

that describe the observed differences between the item distributions. However, the
estimated standard errors of the λ̂S

i
I
j-estimates are different for the two procedures.

As expected, the inappropriate estimates, obtained directly from Table 2.5 assum-
ing independent observations, are all larger than the ones obtained from the correct
marginal-modeling procedures. Most differences are within the range .02–.04, which
makes a difference for the significance level of several λ̂ SI

i j estimates.

Subgroup Comparisons of One Variable Distributions

The satisfaction with body parts is not only known for the whole sample, but also
separately for men and women. As conventional (and scientifically based) wisdom
holds, women perceive their body in ways different from men. The observed mar-
ginal distributions of satisfaction with the body parts and aspects are shown sepa-
rately for men and women in Table 2.7. What strikes one immediately in Table 2.7
is that men seem to be more satisfied with their body than women. These and other
differences between men and women will be investigated using loglinear marginal
models. Most of these models will be indicated by referring to Table 2.7 as if it were
a normal table GSI (Gender × Satisfaction × Item) without repeating every time that
this table is not a normal table and that the models must be tested and its parameters
estimated by means of the appropriate marginal-modeling procedures.

As seen above, the MH model had to be rejected for the total group. But per-
haps this is because one subgroup (maybe women) expresses different degrees of
satisfaction with different body parts, while the other group (maybe men) is equally
(dis)satisfied with all body parts. Testing the MH hypothesis among the men yields:
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Table 2.7. Body Esteem Scales for Men and Women. See also Table 2.5

Men
1. Thighs 2. Body

Build
3.

Buttocks
4. Hips 5. Legs 6. Figure 7. Weight

1 1 3 2 2 1 3 4
2 8 9 9 8 6 11 13
3 20 26 25 24 18 18 15
4 47 40 42 48 49 50 35
5 21 19 19 15 23 15 30
Total 97 97 97 97 97 97 97
Mean 3.81 3.65 3.69 3.68 3.90 3.65 3.76
SD .901 .995 .956 .903 .867 .974 1.064

Women
1. Thighs 2. Body

Build
3.

Buttocks
4. Hips 5. Legs 6. Figure 7. Weight

1 21 7 20 20 17 12 16
2 59 36 50 43 51 34 35
3 59 52 68 64 61 52 59
4 58 87 53 63 61 90 69
5 7 22 13 14 14 16 25
Total 204 204 204 204 204 204 204
Mean 2.86 3.40 2.95 3.04 3.02 3.31 3.25
SD 1.050 1.007 1.072 1.088 1.075 1.029 1.117

G2 = 29.41, df = 24 (p = .205, X2 = 20.66); for women, the results are G2 = 59.95,
df = 24 (p = .000, X2 = 44.33). Testing the overall hypothesis that there is MH in
both (independently observed) subgroups is possible by simply summing the test
statistics: G2 = 29.41 + 59.95 = 89.35, df = 24 + 24 = 48 (p = .000). This overall
hypothesis can also be indicated as conditional independence between S and I in ta-
ble GSI, i.e., model {GS,GI} for table GSI. The test results point out that it is clearly
not true that there is MH in both subgroups. Looking at the separate subgroup tests,
one might be inclined to conclude that there is definitely no MH among women,
but that MH might be accepted for men. Note, however, that there are 204 women
but only 97 men. If we had observed the proportional data in a sample of 204 men
instead of only 97, given these results the expected value of G2 would have been
29.41× 204

97 = 61.85, which is about the same value as obtained for the women. In
other words, the number of men is too small and the test does not have enough power
to definitely draw the conclusion that MH is true for men but not for women.

In light of this, the observed frequencies in Table 2.7 might be taken for granted
as the best guesses of the population values, and they might be parameterized by
means of the parameters of saturated model {GSI} for table GSI. These parameters
can be used to describe how much more men are (dis)satisfied with their body (parts)
than women and how this difference between men and women varies among the
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items. It can also be formulated the other way around: how much more satisfied
the respondents are with particular body parts than with others and how these item
differences vary between men and women.

But before carrying out such detailed descriptions, other models might be con-
sidered that are more parsimonious than the saturated model, but less parsimonious
than MH for both subgroups. The no three-variable interaction model {GS,GI,SI}
for table GSI is a first interesting candidate. According to this model the items may
have different satisfaction distributions, and men may be more or less satisfied than
women, but the item differences are the same for men and women and the gender
differences are the same for all items. Model {GS,GI,SI} then implies that the odds
ratios in subtable SI for men are equal to the corresponding odds ratios in subtable
SI for women. In other words, the corresponding conditional loglinear parameters
for the association between S and I in the subgroups Men and Women are all equal:
λS

i
I
j
|G
m = λS

i
I
j
|G
w in which the conditional loglinear parameters (Hagenaars, 1990, p. 43-

44) are defined as
λS

i
I
j
|G
k = λS

i
I
j
G
∗ + λS

i
I
j
G
k .

Formulated from the viewpoint of the relationship between G and S, the no three-
variable interaction model similarly implies (with obvious notation): λG

k
S
i
|I
j = λG

k
S
i
|I
j′ .

Model {GS,GI,SI} will be treated here as a logit model for the investigation of
the effects of G and I on S, conditioning on the observed distribution of GI. The
test results for model {GS,GI,SI} (using the correct marginal-modeling estimation
procedures) are: G2 = 40.20, df = 24 (p = .020, X2 = 28.66). Where the previous
analyses for testing MH among men and women may have led to the conclusion that
men are equally (dis)satisfied with their different body parts, while women react dif-
ferently to different bodily aspects, acceptance of model {GS,GI,SI} would imply
that both men and women are differently satisfied with different body parts but that
these item differences are the same for both subgroups. It is, however, not clear what
to do: reject or accept model {GS,GI,SI} given the p-value and the rather large
discrepancy between G2 and X2. The parameter estimates in model {GS,GI,SI}
(not reported here) suggest a linear relationship between Gender and Satisfaction
and an interval by nominal association between Satisfaction and Item. Degrees of
freedom might be gained from imposing these linear restrictions obtaining a more
parsimonious no three-variable interaction model. The test outcomes for such a lin-
early restricted model are G2 = 59.88,d f = 45 (p = .068, X2 = 43.50). However,
one should be careful applying such data dredging procedures, certainly in the light
of the p-values obtained and the discrepancies between test statistics G2 and X2.
Actually, more data are needed to arrive at firm conclusions.

The adjusted residuals of model {GS,GI,SI} or, for that matter, the parame-
ter estimates of the saturated model {GSI}, give interesting clues as to why model
{GS,GI,SI} fails to fit unequivocally. They show that the biggest discrepancies re-
garding men’s and women’s satisfaction are for items Thighs and Build. On average,
men are much more satisfied with all their body parts than women. The parameter es-
timates for the average two-variable relation GS in model {SGI} for all items go from
λ̂ GSI

m1∗ =−.529 for men in the very dissatisfied category almost linearly to λ̂ GSI
m5∗ = .623
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for men in the very satisfied category; the corresponding estimates for women are
.529, and −.623 (remembering effect coding is being used). From this, the (extreme)
odds ratio for the average relation between G and S among the body items can be
computed: exp(−.529− .623− .623− .529) = exp(−2.304) = .100. The odds that
a man is very satisfied with a body part rather than very dissatisfied is ten times
(1/.100) higher than the corresponding odds for a woman. The three-variable inter-
action parameter estimates indicate that this average difference between men and
women is even very much (and statistically significantly) stronger for Thighs (in-
verse extreme odds ratio 1/.0159 = 63.02), while it is very much (and statistically
significantly) weaker for Build (inverse extreme odds ratio 1/.532 = 1.88). Regard-
ing these men-women differences, Buttocks and Hips follow Thighs, although the
men-women differences are much smaller for Buttocks and Hips than for Thighs,
while Legs, Figure and Weight follow Build, but also with smaller differences.

Finally, as in the analyses for the whole group, it is seen here again that the
parameter estimates for the nonsaturated loglinear models when (inappropriately)
estimated directly from Table 2.7 differ from the correct estimates, taking the depen-
dencies of the observations into account. Further, the standard errors of the estimates
of the loglinear parameters are all smaller when computed in the correct way and,
consequently, the test statistics larger. Finally, the observed marginal proportions that
are exactly reproduced in the inappropriate analyses assuming independence of the
observations are not exactly reproduced by the marginal-modeling procedures.

These consequences and tendencies have been found many times in later analyses
and will therefore not always be reported anymore; attention will mainly be paid
to exceptions or special cases. One must keep in mind that in the relative simple
cases such as discussed here, standard errors will be larger and test statistics smaller,
when the correlations between the dependent observations are negative or the data in
the joint table lie mainly outside the main diagonal (Hagenaars, 1990, p. 208-209).
However, in situations with more complex dependencies patterns, the consequences
of incorrectly assuming independent observations may not be this simple (see also
Berger, 1985; Verbeek, 1991).

2.2.3 More Complex Designs and Research Questions

Complex Dependency Patterns

The analyses of the previous subsection dealt with data coming from a simple ran-
dom sampling design and pertained to substantive research questions regarding the
comparison of simple (conditional) one-way marginal tables. How to handle more
complicated research designs and more complex marginal tables will be illustrated in
this subsection. The data that will be used as an example come from the Netherlands
Kinship Panel Study (NKPS), a unique in-depth large-scale study into (changing)
kinship relationships covering a large number of life domains (Dykstra et al., 2004).
NKPS contains several different modules with different modes of data collection.
The data used here come from a module in which essentially a random sample from
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the Dutch population above 18 years old has been interviewed, as well as one ran-
domly chosen parent of each respondent. Because of selective nonresponse, there are
many more women than men in the sample. This will be ignored here, but a possible
approach for dealing with nonresponse in marginal models will be briefly discussed
in the last chapter. We will also ignore the fact that within the module we use, just one
child and one parent is selected from each family, regardless of the size of the (nu-
clear) family. To get a representative sample of individual family members, weights
must be applied to correct for the smaller chances of children from large families to
get included in the sample. We will ignore this issue in order to not complicate things
further, but discuss it very briefly in the last chapter. Further details on the study’s
design, fieldwork and nonresponse are provided on the NKPS website, www.nkps.nl.

Among many other things, family members were questioned about their tradi-
tional sex role attitude. A scale was constructed from these questions with (mean)
scores running from 0 to 4. Here, an index will be used with three categories:

• 1 = less traditional attitude (more in favor of an egalitarian division of tasks
between men and women), corresponding with original scale scores between 0
and 1

• 2 = moderately traditional, corresponding to original scale scores between 1 and 2
• 3 = traditional attitude (in favor of a traditional division of labor, such as women

taking care of the house and the children, but men working outside the house
earning the household’s income, etc.), corresponding with original mean scale
scores between 2 and 4.

The data for 1,884 families (parent-child pairs) are shown in Table 2.8. There are
four variables in this table: variable P represents Sex of the parent (1 = father, 2 =
mother), variable C Sex of the child (1 = son, 2 = daughter). Variable A is the Sex
role attitude of the parent, whereas variable B is the Sex role attitude of the child.
This table is the joint (or fully) observed table since its entries are based on indepen-
dently sampled households. Therefore, for many research questions regarding the
relationships among the four variables, no special marginal-modeling techniques are
required. However, this is certainly not true for many other questions.

A relevant question about these data might be whether there are any overall dif-
ferences between parents and children with respect to their sex role attitudes. The
relevant marginals are shown in the first two columns of Table 2.9. These marginals
are obtained by summing the row totals (for the parents’ attitude A) and summing
the column totals (for the children’s attitude B) in the four subtables of Table 2.8.
The first two columns of Table 2.9 will now be denoted as table TG, where T stands
for Traditionalism (with three categories) and G for Generation (parent/child). Given
the sampling design of the NKPS data in the module used here, the data in this table
TG are not independently observed as each parent is coupled with one child (from
the same family). Marginal modeling methods must be used to take this dependency
(clustering, matching) into account when comparing the overall parent and child dis-
tributions.

Complete homogeneity of parents’ and children’s distributions clearly has to
be rejected: G2 = 343.11, df = 2 (p = .000, X2 = 297.98). Ignoring the partial
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Table 2.8. Traditional sex role attitudes; source NKPS, see text

P = 1, C = 1: Father–Son
B. Child’s Attitude

A. Parent’s Attitude 1. Nontrad. 2. Mod. trad. 3. Trad. Total
1. Nontraditional 37 26 3 66
2. Moderately traditional 60 62 13 135
3. Traditional 19 41 11 71
Total 116 129 27 272

P = 1, C = 2: Father–Daughter
B. Child’s Attitude

A. Parent’s Attitude 1. Nontrad. 2. Mod. trad. 3. Trad. Total
1. Nontraditional 101 25 3 129
2. Moderately traditional 108 62 2 172
3. Traditional 26 37 5 68
Total 235 124 10 369

P = 2, C = 1: Mother–Son
B. Child’s Attitude

A. Parent’s Attitude 1. Nontrad. 2. Mod. trad. 3. Trad. Total
1. Nontraditional 92 55 5 152
2. Moderately traditional 91 123 18 232
3. Traditional 30 49 23 102
Total 213 227 46 486

P = 2, C = 2: Mother–Daughter
B. Child’s Attitude

A. Parent’s Attitude 1. Nontrad. 2. Mod. trad. 3. Trad. Total
1. Nontraditional 204 65 6 275
2. Moderately traditional 222 114 11 347
3. Traditional 63 63 9 135
Total 489 242 26 757

Table 2.9. Traditional sex role attitudes; marginal distributions; source NKPS, see text

Sex Role Attitude 1. Parent 2. Child 1. Men 2. Women
1. Nontraditional 622 1053 524 1151
2. Moderately traditional 886 722 663 945
3. Traditional 376 109 212 273
Total 1884 1884 1399 2369

dependency and inappropriately applying the standard independence model {T,G}
directly to the first two columns of Table 2.9 yields different values for the test
statistics: G2 = 284.41, df = 2, p = .000, X2 = 274.62. All adjusted residuals under
the MH model (not reported here) are statistically significant. For parents’ attitude,
the vector with observed marginal proportions in Table 2.9 is (.330, .470, .200); for
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children’s attitude, it is (.559, .383, .058). Looking at these observed marginal pro-
portional distributions of traditionalism, it is evident that children have much less
traditional views on sex roles than their parents. The differences in sex roles attitude
between parents and children can be expressed in terms of the loglinear parame-
ters in saturated model {TG} applied to table TG using marginal-modeling meth-
ods. All two-variable parameters are statistically significant and show an almost
perfectly linear relationship between T and G: λ̂G

1
T
1 = −.416, λ̂G

1
T
2 = −.050, and

λ̂G
1

T
3 = .466. From these estimates, it can be computed that the extreme odds ratio

equals exp(−.416− .466− .416− .466)= .171 (and its inverse 1/.171 = 5.836): the
odds of being traditional (T = 1) rather than nontraditional (T = 3) are almost six
times larger for parents than for children.

Another possibly relevant question that gives rise to a more complex dependency
pattern is about the overall differences between men and women. To answer this
question, the overall marginal distributions of Traditionalism for men and women
have to be obtained by summing appropriate row totals and column totals of the
subtables in Table 2.8. For example, to obtain the marginal distribution for men,
one takes the sum of the row and column totals of subtable 1, the row totals of
subtable 2 and the column totals of subtable 3. The resulting marginal distributions
are reported in the last two columns of Table 2.9, denoted as table TS, where T has
three categories as before and S has two (men, women). Note that now the totals of
these two columns are no longer equal to each other and not equal to the 1,884 parent-
child pairs. In total, there are 2×1884 = 3,768 responses to the questions about sex
roles, 1,399 of which were given by men (fathers and sons) and 2,369 by women
(mothers and daughters). These answers come partly from matched observations,
viz. when originating from the same subtable in Table 2.8, i.e., from father-son or
mother-daughter pairs. For the other part, they are independent observations. Again,
marginal-modeling methods have to be used to take the (partial) dependency into
account.

Marginal homogeneity for men and women in table TS must now explicitly refer
to the equality of the probability distributions because of the different column to-
tals. The test results are G2 = 46.91, df = 2 (p = .000, X2 = 46.33). Inappropriately
assuming completely independent observations and applying model {T,S} directly
to table TS yields G2 = 45.38, df = 2, X2 = 45.11. Men appear to have different
opinions than women regarding the roles of the sexes. The observed distribution for
men is given by vector (.375, .474, .152), for women by (.486, .399, .115). So, men
are more traditional regarding sex roles than women. This is confirmed by the (sta-
tistically significant) loglinear parameters of saturated model {TS} for table TS. The
relationship between S and T is approximately linear: λ̂S

1
T
1 =−.161, λ̂S

1
T
2 = .055, and

λ̂S
1

T
3 = .106 . The overall differences in traditionalism between parents and children

as found above in table T G are definitely larger than the overall differences found
here between men and women in table T S. The extreme odds ratio for the relation-
ship between S and T in table T S, computed analogously as above for the relation
G−T equals .534 and its inverse 1/.534 =1.873: the odds that a man gives a tradi-
tional answer (T = 3) rather than a nontraditional one (T = 1) are almost two times
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Table 2.10. Traditional sex role attitudes; men–women and parents–children marginal distri-
butions; source NKPS, see text

P. Parent’s sex Male
C. Child’s sex Male Female
R. Respondent’s status Parent Child Parent Child

1. Nontraditional 66 116 129 235
T . Sex role attitude 2. Moderately traditional 135 129 172 124

3. Traditional 71 27 68 369
Total 272 272 369 369

P. Parent’s sex Female
C. Child’s sex Male Female
R. Respondent’s status Parent Child Parent Child

1. Nontraditional 152 213 275 489
T . Sex role attitude 2. Moderately traditional 232 227 347 242

3. Traditional 102 46 135 26
Total 486 486 757 757

larger than for a woman. It is also possible to test whether the difference in strengths
of the marginal association between S−T and G−T is statistically significant us-
ing marginal-modeling methods; this will not be done here, but a similar research
question will be illustrated below.

Given the overall differences in traditionalism between generations, and between
men and women, a next logical question is to ask whether or not the generational dif-
ferences in traditionalism are larger among men than among women; or, formulated
the other way around, are the sex differences in traditionalism larger between fathers
and mothers than between sons and daughters. To answer this question, all row and
column totals of the subtables in Table 2.8 have to be considered. They have been put
together in Table 2.10 in the form of a PCRT table (where the symbols P, C, R, and T
are explained in the table). Here the observations are again partially dependent. The
loglinear models of interest can most easily be formulated in terms of the variables in
Table 2.10, using the short-hand notation for hierarchical models. All models will be
logit models for the investigation of the effects on T , conditioning on the distribution
of PCR.

It was found above that the overall differences between parents and children (now
variable R) concerning their sex roles attitudes (variable T ) were very large. But how
large are these differences when we control for the sex of parents and children using
table PCRT? The most parsimonious model in this respect is the model in which
there are no differences left, that is, model R ⊥⊥ T |PC, which states that R and T are
conditionally independent given P and C. This model is equivalent with loglinear
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model {PCR,PCT} for Table 2.10, and identical to the hypothesis of simultaneous
MH in each of the subtables of Table 2.8. For each of the subtables of Table 2.8,
the hypothesis of marginal homogeneity has to be rejected (all p = .000), as well
as the MH hypothesis for all four subgroups simultaneously: G2 = 354.89, df = 8
(p = .000, X2 = 303.56). The next logical step is then to ask whether the apparently
existing marginal differences between parents and children are the same in all four
subtables in Table 2.8. In loglinear terms, is model {PCR,PCT,RT} for Table 2.10
true in the population? However, this model has to be rejected too: G2 = 30.00, df = 6
(p = .000, X2 = 29.44).

In order to find out why model {PCR,PCT,RT} did not fit the data, the parame-
ters for the effects on T in saturated model {PCRT} for Table 2.10 were estimated.
The first striking finding was that all loglinear parameter estimates λ̂ that had P and
T among their superscripts (PT,PCT,PRT,PCRT) had insignificant and very small
values: all absolute λ̂ -values were smaller than .05. This means that there are no
effects at all of P on T and it must be concluded, somewhat unexpectedly, that fa-
thers and mothers do not differ in their attitudes on sex roles in model {PCRT} for
Table 2.10, despite the overall differences between men and women found above.
Apparently, these sex differences only apply to the children, not to the parents. Sec-
ond, there was a substantial main effect of R on T in model {PCRT}. It is approxi-
mately a linear effect (as, by the way, all direct effects on T in model {PCRT} are).
The extreme odds ratio for the relationship R− T in model {PCRT}, i.e., for the
differences between parents and children regarding the odds nontraditional (T = 1)
versus traditional (T = 3) is .157 and its inverse is 6.366. This effect is just a little
bit stronger than the corresponding overall effect G− T discussed above (that was
.171 with its inverse 5.836). But there is also a significant and non-negligible three-
variable interaction term CRT . Because of this interaction term, when sons (C = 1)
are being interviewed, the extreme conditional odds ratio for the differences in tradi-
tionalism between parents and children becomes .264 and its inverse is 3.790, while
for daughters (C = 2), the corresponding extreme conditional odds ratio equals .094
and its inverse is 10.693. In sum, parents are generally more traditional than their
children, but sons depart substantially less from their parents than daughters do.

Summing up, there are no differences whatsoever with regard to traditional at-
titudes towards sex roles between fathers and mothers. Boys and girls, on the other
hand differ; boys being more traditional than girls. The largest attitude differences
were found for Generation: children are much less traditional than their parents, and
this is especially true for daughters, but less so for sons.

So far, all marginal models for the NKPS data concerned the comparison of the
distributions of the one characteristic attitude towards sex role. However, in NKPS,
the respondents were not only asked about their attitudes regarding sex roles but also
regarding marriage: to what extent did the respondents feel that marriage is a sacred
institute? This attitude was measured by items such as ‘having sex before marriage is
forbidden’, and ‘marriage among homosexuals is not allowed’. Traditionalism con-
cerning marriage, which was also originally expressed in terms of mean scale scores,
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Table 2.11. Traditional sex role and Marriage attitudes; marginal distributions for Parents and
Children; source NKPS, see text

I. Item 1. Sex Role 2. Marriage
R. Respondent’s Status 1. Parent 2. Child 1. Parent 2. Child

T . Traditional attitude
1. Nontraditional 622 1053 783 1310
2. Moderately traditional 886 722 896 501
3. Traditional 376 109 205 73
Total 1884 1884 1884 1884

was coded in three categories in the same way as the categorization of the variable
sex role attitude.

A relevant research question then might be whether or not parents and children
differ in the same way regarding both characteristics, viz. traditionalism regarding
sex roles and marriage. The marginal one-variable distributions of both characteris-
tics for parents and children were formed from the full table (not presented here, but
see our website) and shown in Table 2.11.

The observations in the different columns in Table 2.11 are not only dependent
because of the partial matching between particular parents and children, but also be-
cause the data for marriage traditionalism have been obtained from exactly the same
respondents as the data on sex role traditionalism. Estimation and testing procedures
have to take these complex patterns of dependencies into account. Table 2.11 will be
treated as an IRT table with variable T now representing Traditionalism (regarding
sex roles and marriage). The loglinear models considered for the data in Table 2.11
will be logit models for the effects on T , conditioning on the observed frequencies
for marginal table IR.

The hypothesis that there are no parent-child and item differences, in other words,
that all column distributions in Table 2.11 are homogeneous is represented by model
{IR,T} for Table 2.11. In the less restrictive model {IR, IT}, the distributions of T
are allowed to be different for the two items, but not between parents and children.
Assuming homogeneous distributions for the two items but different distributions
for parents and children leads to model {IR,RT}. Finally, the hypothesis that there
are both item and parent-child differences regarding T , but no special three-variable
interactions, is represented by model {IR, IT,RT}.

Note that these models bear strong resemblances to traditional MANOVA models
or ANOVA models for repeated measures, as were the models for the body items data
in Table 2.7; see Chapters 3 and 5 for more MANOVA-like analyses.

However, all these models for Table 2.11 have to be rejected; all p-values are
p = .000. That leaves us with the saturated model {IRT} for Table 2.11. However,
in this saturated model, the three variable interaction effect is very small (although
statistically significant) and does not lead to really different conclusions from the no
three-variable interaction model {IR, IT,RT}. The outcomes in model {IR, IT,RT}
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(not presented here) indicate that parents are substantially more traditional than their
children regarding both characteristics, and that both parents and children have a bit
more traditional views on sex roles than on marriage.

The complex patterns of dependencies in the observations in Table 2.11 as a
consequence of the matched parent-child relation, and of the repeated items, led to
somewhat unexpected outcomes for standard errors and test statistics when the above
correct marginal procedures are compared with the inappropriate analyses ignoring
the dependencies. For example, the G2 statistics for models {IR,T} and {IR, IT}
in Table 2.11 are smaller when calculated in the correct manner than when inap-
propriately applied assuming independent observations. For models {IR,RT} and
{IR, IT,RT} the opposite is true. In the same vein, the standard errors for some of
the parameter estimates in the saturated model are smaller but also larger for some
parameters when estimated in the correct way than when estimated incorrectly as-
suming independent observations. This is different from the patterns found so far. It
turns out that predictions about the consequences of ignoring the (complex) depen-
dencies between the observations may not be of a simple nature: it is not guaranteed
at all that one gains statistical power by taking the dependencies into account; one
might as well lose power. As was seen in many complex analyses, even when expect-
ing ‘positive’ dependencies, ignoring the dependencies in the observations may lead
to smaller standard errors and larger test statistics, but also to the opposite situation:
larger standard errors and smaller test statistics.

Associations Among Variables

So far, only one-way marginals have been considered, either for the sample as a
whole or for subgroups, and either for one or even more characteristics. But multi-
way marginals may be at least as interesting for researchers. Comparisons of more
complex multiway marginals will be discussed in Chapters 4, 5, and 6. Now, the ba-
sic approach will be outlined by means of a simple example showing how to conduct
analyses of associations using two-way marginals. As a first example, the data in
Table 2.8 will be used in which the relationship was shown between Parents’ atti-
tudes (A) and Children’s attitudes towards sex roles (B) for different subgroups. One
may wonder whether the associations AB for homogeneous pairs (father-son and
mother-daughter) are stronger than for nonhomogeneous pairs (father-daughter and
mother-son). If the data in Table 2.8 had come from a design different from NKPS,
in which the information for the particular combinations of the four relevant respon-
dents, viz. father, mother, son, and daughter had all been collected within the same
family, marginal-modeling methods would have been needed to test such a hypothe-
sis. However, given the module of NKPS that is used here, in which one respondent
(child) is coupled with one parent, the four subgroups in Table 2.8 have been inde-
pendently observed and regular loglinear modeling can be used. The hypothesis that
the relationship AB expressed in terms of odds ratios is the same in all four subgroups
is identical to applying model {PCA, PCB, AB} directly and in the standard way to
Table 2.8. This hypothesis need not be rejected: G2 = 12.26, df = 12 (p = .414,
X2 = 12.26). Consequently, the idea that the association AB might be stronger in
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Table 2.12. Association between Sex role and Marriage attitudes for Parents and Children;
source NKPS, see text. Response categories for Marriage and Sex Role: 1 = nontraditional, 2
= moderately traditional, 3 = traditional

R. Respondent’s Status Parent Child
B. Marriage 1 2 3 1 2 3

1 459 152 11 923 120 10
A. Sex Role 2 251 542 93 345 339 38

3 73 202 101 42 42 25

the homogeneous subgroups (mother-daughter and father-son combinations) than in
the nonhomogeneous subgroups (father-daughter and mother-son combinations) is
not accepted. There is the same strong, positive, and statistically significant relation
between A and B within each subtable; the relationship is also approximately lin-
ear and the deviations from linearity are not significant (precise results not reported
here). The test results for a conditional test of the linear restrictions for AB, assuming
a linear × linear (or uniform) association against model {PCA, PCB, AB} without
the linear restrictions for AB are G2 = 1.85, df = 3, (p = .605).

A research question that does require marginal modeling with the NKPS data
would be whether or not the association between the sex role and the marriage atti-
tudes are different for parents and children. One may postulate, for example, that dif-
ferent specific attitudes are more crystalized into a consistent attitude system among
parents than among children. The full data set is presented on the book’s webpage;
the relevant marginal data are displayed in Table 2.12, which will be treated as an
RBA table.

The null hypothesis that the association between A and B is the same for parents
and children corresponds to model {RB,RA,AB} for Table 2.12. This model fits the
data excellently: G2 = 3.791, df = 4 (p = .435, X2 = 3.802). Assuming indepen-
dent observations and applying this model directly to the data in Table 2.12 yields
G2 = 3.891, df = 4, p = .421, X2 = 3.904. There is no reason to assume that the re-
lationship between the two attitudes is stronger for the parents than for the children.
The common relationship between sex role and marriage attitudes is very strong and
monotonically increasing. All local log odds ratios in the common 3× 3 table AB
are positive. The extreme odds ratio involving cells 11, 13, 31, and 33 equals 52.47.
The relationship is not strictly linear since the linear × linear or uniform association
model has to be rejected.

The above illustrations should have made clear when and how substantive re-
search questions involve the comparison of marginal tables and how they can be
translated into the language of loglinear models for marginal tables. Later chapters
will exemplify still more and more complicated research questions. But first, atten-
tion must be paid to the central question of how the maximum likelihood estimates
for loglinear marginal models can be obtained.
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2.3 Maximum Likelihood Inference for Loglinear Marginal
Models

Maximum likelihood inference for marginal models requires that the cell probabil-
ities of the joint table are estimated under the constraints imposed by the marginal
model. The main difficulty in fitting and testing marginal models, compared to ordi-
nary loglinear models, is the dependency of the observations. The estimation proce-
dure discussed here is Bergsma’s (1997) modification of the method of Lang and
Agresti (1994). Fitting marginal models generally requires numerical procedures
since closed form expressions are usually not available. Before the details of the
proposed estimation procedure are given, several sampling methods that are often
used and that are appropriate for maximum likelihood inference are discussed.

2.3.1 Sampling Methods

Let πi represent the probability of observing response pattern i pertaining to a set of
categorical variables for a randomly selected respondent from the population. Each
response pattern i defines a cell in the multidimensional contingency table that con-
tains the observed frequencies ni. Let N be the total number of respondents and I the
total number of cells in the table. It is commonly assumed in social and behavioral
science research that the observed frequency distribution is given by the multinomial
distribution

Pr(n1, · · · ,ni, · · · ,nI) =
I

∏
i

(
N
ni

)
πni

i .

Most researchers take it for granted that the multinomial distribution is the appro-
priate sampling distribution of the frequencies in a contingency table. However, one
should keep in mind that this is only true if several, not always trivial, conditions
are satisfied. For example, the sample size N should be fixed in advance, and should
not depend on other aspects of the sampling process. Further, the respondents are
supposed to be sampled independently from the population with replacement im-
plying that the theoretical cell probabilities πi remain constant during the sampling
process. If these conditions are not satisfied, the multinomial assumption is not valid
and other sampling distributions apply. If sampling is without replacement, the ob-
served frequencies follow a hypergeometric distribution. If the sample size is not
fixed in advance, but depends on the number of times a certain event (called a ‘suc-
cess’) occurs, the negative binomial distribution is more appropriate. The full in-
formation ML estimation procedure for fitting marginal models and the associated
statistical procedures discussed in this book are appropriate for multinomially dis-
tributed frequencies. They are, in general, not appropriate for the hypergeometric and
negative binomial distributions. These less well-known theoretical probability distri-
butions for observed frequencies will not be discussed further in this book. However,
unless stated otherwise, the estimation and test procedures developed here remain
valid for two other sampling distributions: the product multinomial and the Poisson
distribution.
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Sometimes the entire population is stratified before sampling, using a stratifying
variable S. If parameters of different subgroups are of interest, the researcher may
consider taking a fixed number of subjects from each subgroup. The numbers Nk of
observations in each stratum are fixed in advance. Let nik be the number of observa-
tions from stratum k in cell i, assuming K strata. Then, the joint distribution of all
cell frequencies is often assumed to follow the product multinomial distribution

Pr(n11, · · · ,nik, · · · ,nIK) =
K

∏
k=1

I

∏
i=1

(
Nk

nik

)
πnik

ik .

The product multinomial distribution is applicable when the sampling within each
stratum satisfies the conditions stated above for the multinomial distribution, and
additionally when the sampling from different strata occurs independently.

In other applications, it is not the number of observations that is fixed in advance
but some other aspect of the sampling process such as the total observation time. In
that case, the observed frequencies may follow a Poisson distribution

Pr(n1, · · · ,ni, · · · ,nI) =
I

∏
i=1

μni
i e−μi

ni!

with expected frequencies μi for i = 1, · · · , I. The Poisson distribution can be used
when the events that are counted occur randomly over time or space with outcomes
in disjoint periods or regions independent of each other. If the rate of occurrence
of an event is the parameter of interest, such as the number of pedestrians passing
a shopping street per hour, of the above schemes only Poisson sampling would be
appropriate.

2.3.2 Specifying Loglinear Marginal Models by Constraining
the Cell Probabilities

In order to describe the ML estimation procedure, it is useful to specify marginal
models in matrix notation and define the loglinear models in the form of restrictions
on the cell probabilities rather than in terms of loglinear parameters. It will be shown
below why this is useful and how this can be done. The notation that will be used is
an adaptation of the notation proposed by Grizzle et al. (1969).

A vector of loglinear marginal parameters φ can generally be written in the form

φ(π) = C′ logA′π ,

where π is a vector of cell probabilities, and A and C are matrices of constants. The
basic principle of this representation will be illustrated by means of a few simple
examples. But first, it will be made clear what it means when a scalar function f (x)
is applied to a vector of values. Let f (x) be a function of a scalar variable x such as,
for example, f (x) = exp(x) or f (x) = log(x). If this function is applied to a vector of
values like
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x =

⎛

⎝
x1

x2

x3

⎞

⎠ ,

the result is another vector with the values of f (xi) as its elements:

f (x) =

⎛

⎝
f (x1)
f (x2)
f (x3)

⎞

⎠ .

This definition can easily be extended to vectors containing arbitrary numbers of
elements.

Example 1: Marginal Homogeneity in a 3×3 Table

Suppose a categorical variable with three categories is observed at two time points.
The theoretical cell probabilities for the data from this simple panel study can be
written in a 3×3 matrix

Π =

⎛

⎝
π11 π12 π13

π21 π22 π23

π31 π32 π33

⎞

⎠ .

The rows of this matrix correspond to the first measurement and its columns corre-
spond to the second one. For further use, this matrix will have to be written as vector.
In this book we decided to vectorize a matrix row-wise so that when the elements
of a matrix are written in vector form, the last index changes the fastest. Hence, for
matrix Π above,

π = vec(Π) =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

π11

π12

π13

π21

π22

π23

π31

π32

π33

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.

Note that our definition of the vectorization operations differs from the vec operation
defined in textbooks on linear algebra as Searle (2006) and Schott (1997) where
vectorization is carried out column-wise. This vectorization operation can also be
applied to general multidimensional arrays, not just to two-dimensional matrices.
Whenever such a multidimensional array is vectorized, its last dimension changes
the fastest and its first dimension changes the slowest. So, for a 2× 2× 2 array F
with entries fi jk, one has
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vec(F) =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

f111

f112

f121

f122

f211

f212

f221

f222

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

Going back to our example, the univariate marginals of matrix Π are

πi+ = ∑
j

πi j

and

π+ j = ∑
i

πi j .

These marginals can be written in the vector
⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

π1+
π2+
π3+
π+1

π+2

π+3

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

.

Now, consider the following 6×9 matrix:

A′ =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

.

Then it is easy to see that

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

π1+
π2+
π3+
π+1

π+2

π+3

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

.

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

π11

π12

π13

π21

π22

π23

π31

π32

π33

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

= A′π .
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Premultiplication of π by matrix A′ yields the appropriate marginal distributions, and
log(A′π) is then the vector containing the logarithms of those marginal probabilities:

log(A′π) =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

log(π1+)
log(π2+)
log(π3+)
log(π+1)
log(π+2)
log(π+3)

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

.

Under the marginal homogeneity hypothesis, it is assumed that πi+ = π+i for all cat-
egories of the response variable. It then also follows that log(πi+) = log(π+i), imply-
ing that the six entries of the vector log(A′π) are functions of only three parameters
(or: two independent ones, see below). Then, the matrix X is defined as

X =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

,

where the design matrix and the effects are arbitrarily expressed in terms of a
dummy-variable-like notation rather than effect coding. The hypothesis of marginal
homogeneity can now be represented as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

log(π1+)
log(π2+)
log(π3+)
log(π+1)
log(π+2)
log(π+3)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

⎛

⎝
β1

β2

β3

⎞

⎠=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1

β2

β3

β1

β2

β3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

or more concisely as

log(A′π) = Xβ ,

with the vector β containing the three unknown parameters β j for j = 1,2,3. This
equation provides a parametric representation of the marginal homogeneity hypoth-
esis, with β j being the (unknown) logarithm of the sum of the cell probabilities in
the j-th row and in the j-th column of matrix Π .

A parameter-free representation of the marginal homogeneity model is obtained
by noting that it implies the following constraints on the marginal probabilities

log(π1+) = log(π+1)
log(π2+) = log(π+2)
log(π3+) = log(π+3) .
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Since the cell probabilities in Π sum to 1, only two (e.g., the first two) constraints of
the three given here have to be considered. Now, define the 2×6 matrix B′ as

B′ =
(

1 0 0 −1 0 0
0 1 0 0 −1 0

)
,

then (
log(π1+)− log(π+1)
log(π2+)− log(π+2)

)
= B′ log(A′π) .

Marginal homogeneity is now equivalent to B′ log(A′π) = 0. Here we have a repre-
sentation of the marginal homogeneity model that does not contain any parameter,
but is completely formulated in terms of constraints on the cell probabilities in matrix
Π . The hypothesis of marginal homogeneity can now be tested by first determining
the maximum likelihood estimates of the cell probabilities under the constraints im-
plied by the model, and then testing whether or not this restricted model provides
a significantly worse fit than the unconstrained model. In this testing procedure, no
unknown parameters (apart from the cell probabilities) will be estimated.

Example 2: Independence in a 3×3 Table

In this second example, it will be illustrated how the simple independence model
in a two-dimensional table can also be cast in the form of a parameter-free model
(switching to a nonmarginal model for our explanations). We return to the 3 × 3
table Π introduced in the previous example. The loglinear model representing inde-
pendence of the row and column variable is given by

log(πi j) = λR
∗

C
∗ + λR

i
C
∗ + λR

∗
C
j .

Now, take matrix C as the 9×9 identity matrix. Further, define

X =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 1 0 0 1 0 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1
1 0 1 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1
1 0 0 1 1 0 0
1 0 0 1 0 1 0
1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

,

which is the design matrix of the model (arbitrarily using dummy rather than effect
coding). Then, our loglinear model can be written as

C′ log(π) = log(π) = Xλ ,

with vector λ containing the loglinear parameters. As is customary in the discussion
of loglinear models, the symbol λ is used (rather than β ) to represent the unknown
loglinear parameters.
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In order to derive a parameter-free representation of the same model, the concept
of the null space of a matrix has to be introduced. Take the matrix X as defined
above. This matrix is of the order 9×7 and its columns define a vector space whose
elements are the linear combinations of the columns of X

V = {y : y = Xw}
for all weight vectors w consisting here of seven arbitrary weights wk. The vectors y
in V contain nine elements. Since the vector space V is generated by the columns
of matrix X , it is often called the column space of X .

Do we really need all columns of X to generate this vector space? The answer to
this question depends on the column rank of X . The matrix X is of full column rank
if the zero weight vector w = 0 is the only weight vector for which Xw = 0. When
we can find a nonzero vector w, i.e., a vector with a least one element different from
zero, for which Xw = 0, the matrix is of deficient column rank. In that case, there
exists a linear dependency among the columns of matrix X . In the present example,
twice the first column of X is the sum of the other six columns, implying that for
the nonzero weight vector w′

1 = (−2,1,1,1,1,1,1), we have Xw1 = 0. Moreover, the
sum of columns 2 to 4 is equal to the sum of columns 5 to 7. Hence, we have also
Xw2 = 0 for w′

2 = (0,1,1,1,−1,−1,−1). For the present matrix X , one can prove
that only two different linear dependencies exist among its columns. These linear
dependencies allow us to express two columns of X as linear combinations of the
other columns. For example, for the first (x1) and second column (x2), we can write

x1 = x5 + x6 + x7

and

x2 = −x3 − x4 + x5 + x6 + x7 ,

showing that arbitrary elements of V can be generated by a particular selection of
five columns of X . A set of linearly independent vectors that generate a vector space
is called a ‘basis’ of the vector space. The vectors in a vector space can be written
as linear combinations of the elements in its basis. Bases of vector spaces are not
uniquely defined, but the number of generating vectors in them is: the number of
vectors in a basis is called the dimension of the vector space. The vectors defining
a basis for a vector space will be written column-wise in the matrix XB. Removing
any generating vector from a basis transforms the given vector space into a different
one of lower dimensions. If matrix X is of full column rank, there exist no linear
dependencies among its columns and we need all its columns to generate vector
space V with its dimension equal to the number of columns of X . If there exist
linear dependencies among the columns of X , the dimensionality of V is equal to the
number of linearly independent columns of X , and its dimension is smaller than the
number of columns of X . See Schott (1997) for an overview of the concepts of linear
algebra that are relevant for statistics.

To show that a model can be defined in terms of (restrictions on) its parameters
but also (as is true in our marginal-modeling approach) in terms of restrictions on the
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cell probabilities, the concept of a null space is needed. The null space N of X is a
different vector space that can be associated with matrix X . It is defined as

N = {y : y′X = 0} .

The vector space N is the set of all vectors that are orthogonal to the columns of
X . It is also often called the orthocomplement of X . Being itself a vector space,
it can be generated by a set of vectors in one of its bases. One can prove that the
dimensionality of the null space and the column space of a matrix sum to the number
of rows of X . Let XN be the matrix containing a basis of the null space of X , and XB

the matrix containing a basis of the column space of X . Then,

X ′
NXB = 0 .

An important point to realize is that a vector space can be characterized either by
specifying a basis XB, or by specifying a basis XN of its null space: y ∈ V if and only
if y = XBw for some w, if and only if y′XN = 0 (or X ′

Ny = 0). We will discuss in a
later paragraph how to construct bases for both vector spaces.

With this knowledge in mind we can go back to the parametric representation of
the loglinear model for independence:

log(π) = log(A′π) = Xλ .

This relation shows that log(π) is an element in the vector space generated by the
columns of X . Letting XN be the matrix containing in its columns a basis of the null
space of X , it follows that the loglinear model can equivalently be specified in terms
of a set of constraints on the cell probabilities:

X ′
N log(π) = 0 .

In the present example, V has dimension 5 whereas its null space has dimension
4. The columns of the following matrix give a basis for this null space:

XN =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 1 1 1
0 −1 0 −1

−1 0 −1 0
0 0 −1 −1
0 0 0 1
0 0 1 0

−1 −1 0 0
0 1 0 0
1 0 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

With this choice for XN , the constraints on the cell probabilities are
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X ′
N log(π) = log

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

(π11π33)/(π13π31)

(π11π23)/(π13π21)

(π11π32)/(π12π31)

(π11π22)/(π12π21)

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

= 0 .

Independence of the row and column variable in our 3 × 3 table is equivalent to
constraining four independent log odds ratios to be equal to zero.

Example 3: Equality of Local Odds in a 3×3 Table

In a 3× 3 table with cell probabilities πi j, four nonredundant local log odds can be
defined as

ωi j = log

(
πi, jπi+1, j+1

πi, j+1πi+1, j

)

for i, j = 1,2. Let A be the 9×9 identity matrix and define matrices C and X in the
following way:

C′ =

⎛

⎜
⎜
⎝

1 −1 0 −1 1 0 0 0 0
0 0 0 1 −1 0 −1 1 0
0 1 −1 0 −1 1 0 0 0
0 0 0 0 1 −1 0 −1 1

⎞

⎟
⎟
⎠ and X =

⎛

⎜
⎜
⎝

1
1
1
1

⎞

⎟
⎟
⎠ .

The hypothesis that the four local log odds are equal can be represented in parametric
form as

C′ log(A′π) = Xβ ,

with β the common value of the four local log odds. The columns of the following
matrix U provide a basis for the null space of X :

U =

⎛

⎜⎜
⎝

1 1 1
−1 0 0

0 −1 0
0 0 −1

⎞

⎟⎟
⎠ .

The same hypothesis can now be represented in parameter-free form as

U ′C′ log(A′π) = 0 .

Exactly which constraints are imposed on the cell probabilities can be seen from the
product

B′ = U ′C′ =

⎛

⎝
1 −1 0 −2 2 0 1 −1 0
1 −2 1 −1 2 −1 0 0 0
1 −1 0 −1 0 1 0 1 −1

⎞

⎠ ,

and we can represent the hypothesis concisely as

B′ log(A′π) = 0 .
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Example 4: Invariance of Log Odds Ratios Over Time

Suppose that a particular dichotomous variable has been measured at three different
time points, and let A, B, and C represent the three measurements. The full table ABC
contains the cell frequencies nA

i
B
j
C
k corresponding to the theoretical cell probabilities

πA
i

B
j
C
k . Remember that when this three-dimensional array is vectorized, the last sub-

script changes the fastest and the first subscript the slowest. Suppose now that we
want to test whether the (log) odds ratio between consecutive measurements remains
constant over time:

πA
1

B
1

C
+ πA

2
B
2

C
+

πA
1

B
2

C
+ πA

2
B
1

C
+

=
πA

+
B
1

C
1 πA

+
B
2

C
2

πA
+

B
1

C
2 πA

+
B
2

C
1

.

In order to test this hypothesis, loglinear marginal modeling is needed with

A′ =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

C′ =
(

1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 1

)

and

X =
(

1
1

)

so that

U =
(

1
−1

)

and

U ′C′ =
(

1 −1 −1 1 −1 1 1 −1
)

.

It is easy to see that in this example the matrix product A′π yields the cell proba-
bilities in the marginal tables AB and BC, and that C′ log(A′π) defines the appropri-
ate contrasts among the logarithms of these cell probabilities. Finally, the constraint
U ′C′ log(A′π) = 0 corresponds to the hypothesis that the two log odds ratios are
equal.
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The General Parameter-free Representation of Loglinear Marginal Models

The examples above illustrate how both loglinear and loglinear marginal models can
be represented by imposing constraints on the cell probabilities. Loglinear marginal
models have the parameterized form

C′ logA′π = Xβ . (2.4)

For any matrix X , a matrix U can be found whose columns contain a basis of the null
space of X . Every column of U is orthogonal to all columns of X (i.e., U ′X = 0) and
the columns of U and X together span the vector space with dimensionality equal to
number of cells in the frequency table. For any such matrix U (which is generally
not unique), Eq. 2.4 is equivalent to

U ′C′ logA′π = 0 .

Ordinary loglinear models are special cases of loglinear marginal models for which
A and C are identity matrices of the appropriate order, and matrix U contains a basis
of the null space of the design matrix X .

Here we briefly sketch (without giving a formal proof) how a basis of the null
space of matrix X can be obtained. Let the m× k design matrix X (m > k) be of rank
r ≤ k. By means of elementary column operations (Schott, 1997), a k× k matrix Q
can be defined such that

XQ = (X1|0) ,

with X1 an m× r matrix of full column rank r, and 0 an m× (k − r) zero matrix.
Note that this matrix Q is not uniquely defined, since it depends on the order in
which the elementary column operations are carried out. The columns of matrix X1

define a basis of the column space of X . Moreover, it is always possible to select r
linearly independent rows from matrix X1, since if this were not the case the rank
of X1 would be smaller than r. Let the r× r matrix X11 contain such a selection of r
linearly independent rows, and let the (m− r)× r matrix X21 contain the remaining
m− r rows of X1. Furthermore, let Im−r be the (m − r)× (m− r) identity matrix.
Then, the columns of matrix

U =
(−(X21X−1

11 )′
Im−r

)
,

after rearranging its rows in the original order, constitute a basis for the null space of
X .

2.3.3 Simultaneous Modeling of Joint and Marginal Distributions:
Redundancy, Incompatibility and Other Issues

In many applications, it may be necessary or interesting to simultaneously test several
loglinear and loglinear marginal models for the same full table. For example, for the
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3× 3 table Π in the first and second example in the previous section, one might be
interested in a simultaneous test of marginal homogeneity and independence. Both
hypotheses are represented by different matrix constraint equations

U ′
1C′

1 log(A′
1π) = 0

and

U ′
2C′

2 log(A′
2π) = 0 ,

which can be combined in a single overall equation after defining the appropriate
supermatrices:

(
U ′

1 0
0 U ′

2

)(
B′

1 0
0 B′

2

)
log

[(
A′

1
A′

2

)
π
]

=
(

0
0

)
.

This allows a simultaneous test of both hypotheses, however some caution is needed
in combining the constraints of different models in this straightforward way. Some-
times when imposing simultaneous constraints on several marginal tables, or on mar-
ginal and joint distributions, several difficulties may be encountered.

A first one is that particular constraints are redundant, i.e., implied by the other
ones in the set of constraints. Sometimes these redundancies are easily detected, e.g.,
by means of design matrices not being of full rank, but this is certainly not always
so. In any case, the algorithm will not work and converge to the ML estimates if
redundant constraints are specified.

Another class of problems is the specification of incompatible restrictions, i.e.,
restrictions which contradict each other and cannot be satisfied simultaneously. Dur-
ing the estimation process, such incompatabilities may be resolved by means of ‘de-
generate’ solutions in the sense of not-intended estimated zero effects or uniform
distributions, and then may lead to redundancies in the restrictions. For example,
imagine a model specification for the cell entries of a successive series of turnover
tables that has the (unintended) implication that the marginals of these turnover tables
remain stable over time. At the same time, a model is specified for the marginals of
these tables that imply a linear net change in location over time. These two mod-
els can be resolved by assuming that the linear increase or decrease in location
of the marginal is zero. But then, of course, the model for the bivariate joints en-
tries and the model for the marginals contain redundant restrictions. Finally, even if
there are seemingly no problems regarding redundancy or incompatibility, difficul-
ties may still arise in terms of applicability of standard asymptotic theory, and even
with the substantive interpretation of the resulting model. Fortunately, in many cases
frequently occurring in practice, and in most examples discussed in this book, no
problems of these kinds occur. Below, some further details of these kinds of prob-
lems and their solutions will be presented. Although the solutions and results are
only partial, they do cover important situations that occur in practice. Due to the
complexity of the problems involved, it may be unrealistic to expect that, for exam-
ple, a definitely conclusive test for compatibility may be attained. Further extensively
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discussed examples of incompatible sets of restrictions will be presented at the end
of Chapter 4.

An insightful example of a combination of constraints that gives rise to surpris-
ing results is the following (Dawid, 1980; Bergsma & Rudas, 2002a, Example 7).
For a 2×2×2 table ABC, it is simultaneously assumed that A and B are marginally
independent of each other (A ⊥⊥ B), but also conditionally independent given C
(A ⊥⊥ B | C). Denote this model as model M0. Furthermore, let M1 be the model
in which A and C are jointly independent of B (AC ⊥⊥ B), and make M2 the model
where B and C are jointly independent of A (BC ⊥⊥ A). Then, model M0 is equivalent
to either M1 or M2 or both. In other words, if model M0 applies, exactly one of three
following situations may occur:

• M1 applies but M2 does not;
• M2 applies but M1 does not, and
• M1 and M2 both apply.

In the last case, the three variables A, B, and C are mutually independent. On the other
hand, if either M1 or M2 or both apply, M0 also applies. Because it is not clear what
the exact implications are from the original two restrictions in terms of the choice
between M1 and M2, the interpretation of this combined model is not straightforward.
Moreover, the dimension of the model (i.e., the number of free parameters) is not
constant: if all three variables are independent, there are three free parameters; in
other cases there are four. This leads to nonstandard asymptotics if the true number
of free parameters is three. Fortunately, in practice it is usually not difficult to verify
the absence of such problems, as discussed below.

First, consider the case of combining (compatible) restrictions on certain
marginals with a loglinear model for the joint table. The above example is such
a case, as restrictions were placed on the marginal table AB and a loglinear model
was assumed for joint table ABC. A simple test for the absence of problems is that
the restricted marginals should be a subset of the set of sufficient configurations
(Bishop et al., 1975, p. 66) of the loglinear model. For the above example, in model
M0 (A ⊥⊥ B|C) the loglinear model for the full table is {AC,BC}, which means that
the marginal tables AC and BC can freely be restricted (provided of course that the
restrictions on the marginals themselves are compatible). Instead, above AB was
restricted (A ⊥⊥ B), which led to some unexpected results. More generally, precise
conditions using matrix formulations can be given. Suppose we restrict the linear
combinations of probabilities A′π , where A is a matrix with nonnegative elements,
and the loglinear model has design matrix X , i.e., we assume logπ = Xβ for a vector
of loglinear parameters β . Then, a sufficient condition for the absence of problems is
that the columns of A are a linear combination of the columns of X (Lang & Agresti,
1994; Bergsma & Rudas, 2002a).

Before discussing the more general case of loglinear restrictions on nested sets
of marginals (see below), the case of compatibility of fixed marginals must be dis-
cussed, as this gives some insight into the former problem. There are some obvious
cases where fixed marginals are incompatible: if the AC distribution is assumed to
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be uniform, i.e.,

(
.25 .25
.25 .25

)
, and BC is assumed to be

(
.4 .2
.2 .2

)
, then the C marginals

in the two tables are obviously not compatible: in AC it is (.5, .5) and in BC it
is (.6, .4). In other words, there is no joint distribution with these two bivariate
marginals. The set of marginals {AC,BC} is an example of a decomposable set of
marginals for which compatibility can be checked easily in this way. Generally, a
set of marginals is called decomposable if there is an ordering of the marginals so
that, for any k, the intersection of the kth marginal with the union of the first k− 1
marginals equals the intersection of the kth and �th marginals for some � < k. It is
less easy to check for the compatibility of nondecomposable sets of marginals. An
example is the nondecomposable set consisting of AB, BC, and AC. If each of the

tables is restricted to be

(
0 .5
.5 0

)
, then even though the one-dimensional marginals

are compatible, there is no joint distribution with these bivariate marginals since the
restrictions imply a perfect negative correlation for all pairs of variables, which is
impossible.

The problem of compatibility of several marginal tables is very closely related
to the existence of maximum likelihood estimates for loglinear models with zero
observed cells, which is the reason decomposability comes in here. In particular, ML
estimates of loglinear parameters for a certain loglinear model exist if, and only if,
there exists a strictly positive distribution compatible with the sufficient statistics for
the model. See Haberman (1973, 1974) for a rigorous treatment of the problem of
the existence of ML estimates for loglinear models.

Next, more general (loglinear) constraints on possibly nested marginals will be
dealt with. A first marginal (like AB) is nested in a second marginal (like ABC) if it
consists of a selection of variables from the second marginal. In this way, every mar-
ginal is nested in the complete set of variables from the joint distribution. A general
result was obtained by Bergsma and Rudas (2002a). The main sufficient condition
for compatibility they formulated is that linear restrictions on loglinear marginal pa-
rameters are compatible if no two restricted parameters with different superscripts
have indices belonging to the same variables in the subscript. In the above example
of marginal and conditional independence, the constraints were λA

i
B
j = 0, λA

i
B
j
C∗ = 0,

and λA
i

B
j
C
k = 0. The problem arises from the first two restrictions: two corresponding

loglinear parameters with subscript set {i, j} belonging to variables A and B are re-
stricted in the two different marginal tables AB and ABC, leading to the problems. If
the compatibility condition is satisfied, then additionally the model interpretation is
straightforward and standard asymptotics apply. In Section 4.5, analyses of real data
are discussed where these results are relevant.

For affine restrictions on the loglinear marginal parameters, i.e., restrictions in
which linear combinations of the loglinear parameters are set equal to a nonzero
value, the situation is more complex. Bergsma and Rudas (2002a) showed that if the
set of marginals that is restricted is ordered decomposable, then the above condi-
tion is sufficient to guarantee the compatibility of constraints. A set of marginals is
ordered decomposable if there is an ordering such that, for any k, the maximal ele-
ments of the first k marginals in the ordering are decomposable. See Bergsma and
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Rudas (2002b) and Bergsma and Rudas (2002c) for a more extended discussion and
several illustrations of compatibility issues. Extensions of these results to marginal
models based on cumulative and other types of logits and higher order parameters
are given by Bartolucci, Colombi, and Forcina (2007). An algorithm for checking
compatibility of marginal distributions with specific values is given by Qaqish and
Ivanova (2006).

Finally, there is the question of the uniqueness of ML estimates. Bergsma (1997)
showed that for many marginal homogeneity models, the likelihood has a unique lo-
cal maximum (which then must be the global maximum). The simplest example is
when the marginals are disjoint (like marginals AB and CD in contrast to marginals
AC and BC): then for any practically relevant marginal homogeneity model, the like-
lihood has a unique stationary point that is the ML estimate.

2.3.4 ***Maximum Likelihood Estimates of Constrained Cell Probabilities

Suppose that the observed frequencies ni, i = 1, · · · , I are multinomially or Poisson
distributed with theoretical cell probabilities πi. As shown above, when these cells
satisfy a loglinear marginal model, there exist matrices A and B such that

h(A′π) = B′ log(A′π) = 0 .

The notation h(A′π) = 0 allows extension to nonloglinear marginal models as well,
which are discussed in the next chapter. In general, all loglinear marginal models
can be specified in such a way that all rows of matrix B′ sum to zero, which means
that each row represents a contrast among the logarithms of the cell probabilities.
A sufficient but not necessary condition for the rows of B′ = U ′C′ to sum to zero is
that the matrix X in Eq. 2.4 contains a constant column. If the rows sum to zero, it
is immaterial whether we formulate the model in terms of expected cell frequencies
or in terms of cell probabilities. More technically, the function h is such that for any
c > 0, h(cx) = h(x). This is an important condition simplifying maximum likelihood
estimation. We say that the function h is homogeneous, and this issue will be dis-
cussed in more extensively in Chapter 3. For any homogeneous scalar function f ,
Euler’s theorem says that

∑
i

xi
∂ f (x)

∂xi
= 0 . (2.5)

In order to test whether a particular marginal model fits the data well, first the
maximum likelihood estimates of the cell probabilities must be obtained under the
constraints imposed by the model. Utilizing the Lagrange multiplier method for con-
strained optimization as described by Aitchison and Silvey (1958) and Aitchison
and Silvey (1960), these estimates are obtained by determining the saddle point of
the kernel of the Lagrangian log likelihood function

L(π ,λ ,μ) = p′ log(π)− μ
(
∑πi −1

)−λ ′h(A′π) , (2.6)
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in which p is the vector of observed proportions, λ is a vector of unknown Lagrange
multipliers, μ a Lagrange multiplier and

h(A′π) = B′ log(A′π) .

The term μ (∑πi −1) is added to incorporate the constraint that the cell probabilities
sum to one. The maximum likelihood estimates are denoted as π̂ , λ̂ , and μ̂ .

We will now give a set of equations that has the ML estimate π̂ as its solution. In
these equations, following the method of Bergsma (1997, Appendix A), the Lagrange
multipliers will be expressed as a function of π , i.e., we effectively eliminate them
from the equations, thus simplifying the problem of finding ML estimates π̂ . We
need the Jacobian of the constraint function h, given as

H(x) =
dh(x)′

dx
= D−1

x B ,

where Dx is the diagonal matrix with vector x on the main diagonal. Note that the
(i,k)th element of H(x) is given by

∂hk(x)
∂xi

.

Now using the shorthand

H = H(A′π) ,

the chain rule for matrix differentiation leads to

dh(A′π)′

dπ
= AH .

The derivative of the Lagrangian function (Eq. 2.6) with respect to π then is

l(π ,λ ,μ) =
dL(π ,λ ,μ)

dπ
=

p
π
− μ −AHλ .

Thus, the ML estimates (π̂, λ̂ , μ̂) are solutions to the simultaneous equations

l(π ,λ ,μ) = 0

h(A′π) = 0 .

By homogeneity of h and Euler’s theorem (see Eq. 2.5), π ′AH = 0′. Hence,
π ′l(π ,λ ,μ) = 1′p− μ1′π = 1− μ = 0, and so μ̂ = 1. Let

l(π ,λ ) = l(π ,λ , μ̂) =
p
π
−1−AHλ ,

and we now only need to solve the simplified equations

l(π ,λ ) = 0 (2.7)

h(A′π) = 0 . (2.8)
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Bergsma (1997) proposed to write the Lagrange multiplier vector λ in terms of the
cell probabilities π as follows:

λ (π) =
[
H ′A′Dπ AH

]−1 [
H ′A′(p−π)+ h(A′π)

]
.

It can then be verified that if π̂ is a solution of the equation

l(π ,λ (π)) = 0 , (2.9)

then (π̂, λ̂ ), with λ̂ = λ (π̂), is a solution of (2.7) and (2.8), and if (π̂, λ̂ ) is a solution
of Eqs. 2.7 and 2.8, then λ̂ = λ (π̂). Hence, by writing λ in terms of π and sub-
stituting into l(π ,λ ), we have reduced the dimension of the problem by effectively
eliminating the Lagrange multiplier λ as an independent parameter. That is, we only
need to solve Eq. 2.9 in terms of π .

In general, this optimization problem cannot be solved analytically but requires
appropriate numerical optimization procedures. In the next section, we describe such
an algorithm, based on the likelihood equation Eq. 2.9.

If a stratified sampling procedure has been used, the definition of the Lagrangian
can easily be extended to take the existence of different strata in the population into
account. Here it is required that h is homogeneous relative to the stratification used
(see Lang, 1996b for further details). He also showed that for inference about certain
higher order loglinear marginal parameters, usually those of most interest, ignoring
the fact that sampling is stratified leads to identical asymptotic inferences.

2.3.5 ***A Numerical Algorithm for ML Estimation

Bergsma (1997), building on previous work by Aitchison and Silvey (1958) and Lang
and Agresti (1994), derived the following algorithm for fitting marginal models. The
first step of the algorithm is to choose an appropriate starting point π (0), after which
subsequent estimates π (k+1) (k = 0,1,2, . . .) are calculated iteratively using the for-
mula

logπ (k+1) = logπ (k) + step(k)l[π (k),λ (π (k))]

for an appropriate step size step(k). The algorithm terminates at an iteration k if
l[π (k),λ (π (k))] is sufficiently close to zero. Although the algorithm looks like a linear
search, it can be viewed as a form of Fisher scoring since it is based on a weighting
by the inverse of the expected value of the second derivative matrix of the Lagrangian
likelihood L(π ,λ ) (Bergsma, 1997).

The algorithm of Bergsma used here and the one described by Aitchison and Sil-
vey and Lang and Agresti are both based on the Lagrange multiplier technique, but
a salient difference is that the latter searches in the product space of the probability
simplex and the space of the Lagrange multipliers, whereas our algorithm searches in
the lower dimensional probability simplex. In this sense, Bergsma’s algorithm is sim-
pler, and practical experience also indicates that it also performs better numerically.
For example, Lang, McDonald, and Smith (1999) needed to impose additional re-
strictions on certain loglinear marginal models in order to achieve convergence with
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the Lang-Agresti algorithm, whereas convergence was easily achieved for the same
models without the additional restrictions with Bergsma’s simplified algorithm.

In our experience, a good choice of starting point π (0) is simply the observed
cell proportions if all of them are strictly positive. If there are zero observed cells,
we found that a slight smoothing towards uniformity works well, a good choice,
in particular, seems to be to add .01 divided by the number of cells to each cell, and
rescale so that the proportions add up to one. Starting values should always be strictly
positive. For certain starting points (wildly different from the observed proportions)
in certain problems, we could not reach convergence. Although there is no guarantee
that any starting values lead to convergence of the algorithm, all of the manifest
variable models in this book could be fitted with the default starting values of our
programme. For certain latent variable models, this did not always work; further
details are given in Chapter 6.

Since l(π ,λ (π)) is not the derivative of an unrestricted likelihood function to be
maximized, the choice of step size becomes more difficult because we do not know
if a new estimate is ‘better’ than the previous one. However, the step size may be
chosen such that an appropriate function that measures the ‘distance’ of the iterative
estimate from the ML estimate decreases. A reasonable function is the quadratic
form

d(π) = l[π ,λ (π)]′ Dπ l[π ,λ (π)]

which is zero if and only if π is a stationary point of L(π ,λ (π)), and positive other-
wise. In the search for an optimal value of the step size, step(k) is initially set equal
to 1. If this results in an increase of the criterion d(π), the step size is halved. This
process of halving the step size is continued until d(π) decreases. Unfortunately, it
is not always possible to obtain a decrease of d(π), because l(π ,λ (π)) is not a gra-
dient of d(π). If that is the case, a ‘jump’ may have to be made to a different region,
for example, by going back to step(k) = 1. We could not always get convergence
with this step-size halving method: for some problems, we needed to set a maximum
to the step size (e.g., 0.3). The maximum permissable step size had to be found by
trying out different values, but we always managed to find it fairly quickly. Note
that generally speaking the smaller the maximum step size, the higher the likelihood
of convergence, but the slower the algorithm potentially becomes. Concluding, the
overall procedure for choosing a step size is somewhat ad hoc, but has worked well
in practice for us.

A potentially serious problem with the algorithm is the possible singularity or
ill-conditioning of the matrix H ′A′Dπ AH, which has to be inverted. If the matrix is
singular at every value of π , this means that at least one constraint is redundant and
needs to be removed, see also the discussion in Section 2.3.3. Another possibility is
that the matrix is singular at the ML estimate π̂ , but not at values close to it. Our
Mathematica programme then gives warnings about the ill-conditioning during the
iterative process. We found that in such cases it still appears to be possible to obtain
fairly good convergence of the algorithm, say, to four or five decimal places of the
likelihood ratio statistic, but the algorithm will not converge any further. Fortunately,
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this seems to be rare for manifest data loglinear marginal models discussed in this
chapter, although on the latent level (Chapter 6) we did encounter the problem.

Aside from convergence, another important issue is efficiency. Although the
algorithm does involve a matrix inversion, for all of the problems in this book the ma-
trix to be inverted is relatively small and does not form a computational bottleneck.
The real computational challenge arises from computations involving the matrix A
in the marginal model specification. For large tables, this matrix is large and may
not be storable in computer memory. However, for marginal models the matrix con-
sists of zeroes and ones and can be stored much more efficiently using sparse array
techniques, which are implemented in computer packages such as Mathematica or
MATLAB. The advantage is that the zeroes do not need to be stored, but the disad-
vantage is that we still need to store (the locations of) the ones. To overcome even the
latter disadvantage, a programme can be written that avoids the storing of matrix A
altogether, and uses its special structure to do computations directly. This approach
can also lead to potentially significant speed improvements, but this all depends on
the details of the programme implementation.

For either of the approaches outlined above to work, the algorithm needs to be
written out in more detail, specifying the order of computations to be done. The
computational bottleneck of the algorithm is the computation of l[π ,λ (π)], which
can be written out fully as

l[π ,λ (π)] =
p
π
−1−A

(
H
[
H ′(A′Dπ A)H

]−1 [
H ′(A′(p−π))+ h(A′π)

])
.

Here, extra parentheses have been inserted to indicate the order of evaluation. There
are three potentially inefficient computations involving matrix A: 1) multiplication
of A by a vector, 2) computation of A′DπA, and 3) multiplication of A′ by a vector.
These operations can be made (much) more efficient both by the use of sparse array
techniques or doing the computations using the special structure of matrix A without
creating the matrix itself. Note that the matrix A′Dπ A is typically small compared to
the size of the table. For example, say we have 10 trichotomous variables, and A′π
consists of the univariate marginals, then the full table consists of 310 = 59049 cells
and A′Dπ A is a 30×30 matrix with only 900 elements.

For comparison purposes, a different order of evaluation is given as follows:

l[π ,λ (π)] =
p
π
−1− (AH)

[
(H ′A′)Dπ(AH)

]−1 [(H ′A′)(p−π)+ h(A′π)
]

.

In this case, matrix AH and its transpose have to be computed and stored. In the
example with 10 trichotomous variables, its size is 59049× 30. Especially for even
larger tables, storing and manipulating this matrix could lead to problems in terms of
computing time and space.

A final issue with the algorithm is that for loglinear marginal models, estimated
marginal probabilities should not be zero, because we need to take their logarithm.
However, if there are zero observed marginal probabilities, estimated probabilities
may be zero as well. Since we cannot take the logarithm of zero, we advise incor-
porating a minimum value for the (joint) estimated probabilities in the estimation
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procedure. Thus, if at any point during the iterative process an estimated probability
obtains a value of, say, less than 10−100, we can replace its value by 10−100.

Concluding this subsection, the algorithm proposed here is not without its prob-
lems, however, we have successfully applied it to fit models for tables with more than
a million cells.

2.3.6 ***Efficient Computation of ML Estimates for Simultaneous
Joint and Marginal Models

If we wish to simultaneously test a loglinear model and one or more loglinear mar-
ginal models, the procedure described in the previous subsection can be applied but
may be (far) too inefficient, especially for large tables, and we describe a more ef-
ficient modified procedure here. This case corresponds to the simultaneous models
discussed in Section 2.3.3 with either A1 or A2 equal to the identity matrix. The pro-
cedure is briefly outlined in Bergsma (1997, page 95) and in detail in Lang et al.
(1999). It is especially important for use with the EM algorithm for loglinear latent
variable models with marginal constraints (see Chapter 6). The modified algorithm
gives the same iterative estimates as the algorithm described in the previous section,
but computes these more efficiently.

We assume a loglinear model for π specified as

logπ = Wγ

and a loglinear marginal model of the form

B′ logA′π = 0 , (2.10)

where matrices A and B satisfy the regularity condition described in Section 2.3.3
that the columns of A are a linear combination of the columns of W . Using this reg-
ularity condition, we can show that l(π ,λ (π)) based on the simultaneous marginal
and loglinear model reduces to

lW (π ,λ (π)) = l(π ,λ (π))+W(W ′DπW )−1W ′(p−π)

=
p
π
−1−AHλ (π)+W(W ′DπW )−1W ′(p−π)

where l(π ,λ (π)) in the formula is based on the marginal model in Eq. 2.10. The
advantage of this formulation is that it is not necessary to compute the orthocom-
plement of W , which tends to be large. To illustrate, if we have a loglinear model
with only first order interactions for 10 trichotomous variables, then W has size
310×201 = 59049×201, whereas its orthocomplement has size 310× (310−201) =
59049×58848, which is almost 300 times larger.

With starting values π (0) satisfying the loglinear model, the algorithm is
analogous to what we did previously, namely, for k = 0,1,2, . . . ,

logπ (k+1) = logπ (k)− step(k)lW [π (k),λ (π (k))] .
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For π (0), the uniform distribution can be chosen. Otherwise, the same recommenda-
tions for implementation of the algorithm apply as in the previous section.

In this algorithm, in contrast to the one of the previous subsection, not one but
two matrices need to be inverted at every iterative step, namely

Q(π) = W ′DπW

and

R(π) = H ′A′Dπ AH .

From the assumption that the columns of A are linear combinations of the columns
of W , there exists a matrix U such that A = WU , and we can write

R(π) = H ′U ′W ′DπWUH = H ′U ′Q(π)UH .

Normally U has full column rank, so if H also has full column rank and Q is nonsin-
gular, R is nonsingular. In practice, either of the matrices Q and R may be singular
when evaluated at π̂ . For Q(π), we found that a generalized (Moore-Penrose) in-
verse can be used instead of the true inverse if it doesn’t exist. For R(π), a reduction
is needed in the number of constraints that are imposed, thereby reducing the number
of columns of H to make it full column rank. However, in the problems of this book,
we found that although the second matrix could be near singular, giving warnings
by our Mathematica programme, it was still sufficiently far from singularity to allow
the algorithm to converge fairly well. The main potential computational bottleneck
of the present algorithm is the actual computation of Q(π) and of R(π) rather than
their inversion. The size of these complexities are increasing with 1) the number
of constraints imposed by h(A′π) = 0, which determines the number of columns of
H, and 2) the number of loglinear parameters γ in the model, which determines the
number of columns of W .

2.3.7 ***Large Sample Distribution of ML estimates

In the general model formulation of Eq. 2.4, several parameters may be of interest,
in particular, 1) the vector of marginal probabilities A′π , 2) the loglinear marginal
parameters φ(π) = C′ logA′π , and 3) the vector of model parameters β . Under con-
ditions usually met in practice, the ML estimates of these parameters are consistent
estimators of the population values and have an asymptotic normal distribution ( see
Section 2.3.3 for exceptions). In particular, the elements of φ(π) must have continu-
ous second derivatives (Lang, 1996a). Below, using results by Aitchison and Silvey
(1958) (see also Lang, 1996a and Bergsma, 1997), we provide the asymptotic covari-
ance matrices of these parameters, assuming the appropriate regularity conditions are
met. We first give the asymptotic covariance matrix of the estimated cell probabilities
if model defined by Eq. 2.4 is true. Although this matrix can be large and is often of
little interest in itself, we can use it to calculate the asymptotic covariance matrix of
the aforementioned parameters of interest using the delta method. For Poisson and
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multinomial sampling, the asymptotic covariance matrix of the estimated probabili-
ties is

V (π̂) =
1
N

(
Dπ −DπAH(H ′A′Dπ AH)−1H ′A′Dπ −ππ ′) . (2.11)

By the delta method, the asymptotic covariance for the marginal probabilities is

V (A′π̂) = A′V (π̂)A ,

for the parameter vector φ̂ = φ(π̂) it is

V (φ̂ ) = C′D−1
A′π A′V (π̂)AD−1

A′πC ,

and since β = (X ′X)−1X ′φ(π), for β̂ it is

V (β̂ ) = (X ′X)−1X ′V (φ̂)X(X ′X)−1 .

For the residuals pi − π̂i, to be discussed in the next subsection, the asymptotic
covariance matrix is

V (pi − π̂) =
1
N

Dπ AH(H ′A′Dπ AH)−1H ′A′Dπ . (2.12)

For the perhaps more interesting residuals φobs − φ̂ , where φobs = φ(A′p), the delta
method yields

V (φobs − φ̂) = C′D−1
A′πA′V (pi − π̂)AD−1

A′πC . (2.13)

For stratified sampling, let π (k) be the probability vector for stratum k. Then, the
asymptotic covariance matrix of the estimated probabilities is

V (π̂) =
1
N

(
Dπ −DπAH(H ′A′DπAH)−1H ′A′Dπ −⊕kπ (k)(π (k))′

)
,

where ⊕ is the direct sum, defined as the block-diagonal matrix with the summed
matrices as blocks. In the same way as above, the corresponding covariance matrices
for other parameters are obtained using the delta method. However, we can show
that the covariance matrices of loglinear parameters (i.e., the elements of φ̂ and β̂ )
need not be affected by the stratification. In particular, in a two-way table formed
by a stratifying variable and a response variable, the (log) odds ratios and the main
loglinear effect pertaining to the response variable are unaffected, while the main
loglinear effect pertaining to the stratifying variable is affected. The covariance ma-
trix of π̂ under more general types of (stratified) sampling schemes is given in Lang
(1996a).

If we simultaneously impose a loglinear model logπ = Wγ and a loglinear mar-
ginal model h(A′π) = 0, we obtain the partitioned covariance matrix

V (π̂) = V (π̂1)+V(π̂2)−V(π̂0) (2.14)
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where π̂1 is the ML estimate of π under only the marginal model (see Eq. 2.11 for
V (π̂1)), π̂2 is the ML estimate of π under only the loglinear model, for which

V (π̂2) =
1
N

(
DπW (W ′DπW )−1W ′Dπ −ππ ′) ,

and π̂0 = p is the unrestricted ML estimate of π for which V (p) = Dπ − ππ ′. The
partitioning holds because of the orthogonality, in the sense of asymptotic indepen-
dence of ML estimates of the loglinear and marginal parameters (Bergsma, 1997,
Section 5.4.2, Appendix A.3 and references therein). Again, the delta method is used
to obtain expressions for the relevant asymptotic covariance matrices of other param-
eters.

Classical confidence intervals are easily calculated using standard errors, which
we frequently provide in this book. Currently, other confidence intervals, such as
those obtained by inverting the score statistic, are being developed and are now start-
ing to become feasible for marginal models as well. Typically, such intervals are
more cumbersome to compute however. The interested reader can consult (Agresti,
2002, Sections 1.4.2 and 3.1.8), Agresti and Coull (1998), Brown, Cai, and Dasgupta
(1999) and Lang (2008).

2.3.8 Model Evaluation

In Section 2.1.1, the goodness-of-fit statistics G2 and X2 have been described that
can be used to evaluate whether a given model fits the data. If the model does not
fit well, insight can be gained into the reasons for this lack of fit by analyzing cell
(or other) residuals, which are measures for the deviation of observed from fitted
cell values. Even if the model fits well, these residuals can be used to detect certain
deviations from the model that are not apparent from the overall goodness of fit.

Various types of residuals are in use. For cell i, the raw residual pi − π̂i, where pi

is the observed proportion in cell i, depends strongly on the size of π̂i and is therefore
of limited use. A measure that adjusts for the size of π̂i is the standardized residual,
which is defined as

ei =
√

N
pi − π̂i√

π̂i
.

The ei are related to the Pearson statistic by ∑e2
i = X2. Thus, they show, for every

cell, exactly how much it contributes to a large value of X2. Pearson residuals may
be useful for marginal probabilities as well, although in that case their squares do not
add up to the X2 statistic, so a bit more care has to be taken in their interpretation.

One drawback of standardized residuals is that their variance is smaller than 1, so
a comparison with the standard normal distribution is not appropriate. The adjusted
residual proposed by Haberman (1974) is defined as the raw residual pi − π̂i divided
by its standard error. Because its mean is 0 and variance is 1, it is better suited for
comparison with the standard normal than the standardized residual. Denoting the
adjusted residuals by ri, the definition is
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ri =
pi − π̂i

se(pi − π̂i)
.

The values of the standard errors se(pi − π̂i) are given by the square roots of the
diagonal entries of the right hand side of Eq. 2.12.

Other adjusted residuals may be considered as well. Perhaps most interesting are
the adjusted residuals of marginal loglinear parameters, defined as

φobs, j − φ̂ j

se(φobs, j − φ̂ j)
.

The denominator is obtained as the square root of the corresponding diagonal ele-
ment of the right-hand side of Eq. 2.13.




