
Chapter 2

A CAS AS AN ASSISTANT TO REASONED

INSTRUMENTATION

Philippe Elbaz-Vincent
UMR CNRS & Département de Mathématiques

Université Montpellier II, France

pev@math.univ-montp2.fr

Abstract: We propose to illustrate an approach to reasoned instrumentation with a

Computer Algebra System (CAS). We give an overview of how a CAS works

(in our case MAPLE), and also some explanations of the mathematical

theories involved in the algorithms described. We point out the failures of

some methods, and how we can anticipate and prevent them. We conclude by

giving some personal insights on how we can use a CAS in an educational

framework.

Key words: Computation of limits, Computer Algebra System, Reasoned

instrumentation, Symbolic integration.

42 Chapter 2

1. PRELIMINARIES

1.1 Foreword

Despite the fact that numerous CAS exist, we will work mainly in the

present paper with MAPLE (version 5) and DERIVE. Our main interest is in

symbolic computation. In such a framework, the software becomes a kind of

‘personal assistant’ for computations and experimentations, for the

researcher, as well as the teacher. One of the main problem with a CAS is

how to interpret the results, in particular when the computations seem to

have gone wrong. In this chapter, we will explore several situations
1

which

will illustrate what we call reasoned instrumentation, in particular in a

classroom context.

We will only suppose from the reader some basic knowledge of MAPLE

or a similar CAS (e.g., MATHEMATICA, MuPAD or MAXIMA).

1.2 Technical preliminaries

It is useful to have a better understanding of how MAPLE (or

equivalently your personal CAS) works. In our specific case, we can say that

Maple is written in… Maple. Indeed, only ‘basic’ functions are built in

another programming language (C in our case). This set of functions is

called the kernel of MAPLE. All the other functions and procedures are

written using functions from the kernel. This is a great advantage for

learning. It is possible to see how most of the functions are written, thus

giving us the possibility of modifying them. In order to do this, we use the

command interface (verboseproc=2); described in Kofler (1997,

Chapter 28). Then, it is enough to print the given procedure in order to see

the code. In the following we give three examples:

> interface(verboseproc=2):

> print(abs);

proc() option builtin; 72 end

> print(goto);

proc() option builtin; 108 end

> print(sin);

proc(x::algebraic)

local n, t;

option

‘Copyright (c) 1992 by the University of Waterloo. All rights

reserved.‘;

if nargs <> 1 then ERROR(‘expecting 1 argument, got ‘.nargs)

elif type(x, ’complex(float)’) then evalf (’sin’(x))

A CAS as an Assistant to Reasoned Instrumentation 43

elif type(x
|

‘*‘) and member(I
|
åop(x)ç.) then I*sinh(- I*x)

elif type(x, ’complex(numeric)’) then

if csgn(x) < 0 then -sin(-x) else ’sin’ (x) fi

elif type(x, ‘*‘) and type(op(1, x), ’complex(numeric)’) and

csgn(op(1, x)) < 0 then -sin(-x)

.

.

.

elif type(x, ’function ’) and op(0, x) = ’JacobiAM’ then

JacobiSN(op(x))

elif type(x, ’arctan(algebraic, algebraic)’) then

op(1, x)/sqrt(op(1, x)^2 + op(2, x)^2)

else sin(x) := ’sin’ (x)

fi

end

>

The functions abs and goto
2

are part of the kernel, which is indicated by

the option builtin. On the other hand, the function sin is a program of 60

lines and uses other functions. Another possibility in order to understand

how a procedure works and what the procedure is doing is to trace it. In

other words, we can trace all the different steps of the computation

(assuming this functionality was allowed in the procedure). We have access

to this functionality via the command infolevel. For instance, infolevel

[all]:=5; will print the maximum of detail during the running of the

procedure and this is a valuable tool for the teacher. For further information,

see Kofler (1997: Chapters 28 to 30).

1.3 Representation of an object in a CAS

As aforementioned, we will illustrate this topic with MAPLE, but

basically most CAS use similar features. In order to compare two

expressions, we will need some normalization procedures, particularly in the

difficult case where we want to know if a given expression is zero or not.

Usually, a CAS like MAPLE does few evaluations of the expressions. But

some systems, like DERIVE, perform more evaluations. We can illustrate

that on a simple example; we have:

2 3 - 6 = 0 .

Suppose that we define the variable t, in MAPLE, as the expression:

t = 2 3 - 6 .

44 Chapter 2

This last expression will return non-evaluated by the system and will not

be replaced by 0. Nevertheless, the test is(t=0) will return true. In

comparison, with DERIVE, we will have an immediate evaluation of the

expression, with the expected result. In fact, with MAPLE, the variable t is

stored as a symbolic expression (i.e., a syntactic expression). Thus
3
, the

quantity 2 3 - 6 is nothing else than a sequence of symbols attached to

the variable t. In this case, we have three components op(0,t) = +, op(1,t) =

2 3 and op(2,t) = – 6 . Each one of these components could be split into

other sub-components, in order to get, formally speaking, a tree structure.

An example of normalization, under MAPLE, is given by the command

radnormal (for radical normal form). If we apply this command to t, we

get:

> radnormal(t);

0

This procedure is quite efficient and could simplify (in an algorithmic

way) any complex radical expressions. Some examples are given in the

following:

> radnormal(sqrt(5+2*sqrt(6)));

3
1/2

 + 2
1/2

> radnormal(sqrt9^(1/3)+6*3^(1/3)+9));

3
1/3

+ 3

> radnormal((sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), rationalized);

5 + 2 3
1/2

 2
1/2

In the last command, we have added the option rationalized in order to

normalize the denominators as well. The above operations are consistent

with the following equalities:

5 + 2 6 = 3 + 2,

93 + 6 33 +9 = 33 + 3,

3 + 2

3 - 2
= 5 + 2 6.

In the same way, there is a normal form for polynomial and rational

expressions. The uniqueness of such normal forms allows the system to

compare such kinds of expression, and the efficiency of the internal

representation of the expressions permits such comparison in reasonable

time. In this type of algebraic treatment, CAS are very efficient and reliable.

For more details related to radical expressions, we suggest reading Jeffrey &

Rich (1999). In the following, we will give some insights on how the

A CAS as an Assistant to Reasoned Instrumentation 45

internal representation of the expressions is done, mainly by use of

examples. Consider the expression below:

> E:=ln(1+x)-2*sin(1+x);

E :=ln(1 + X) - 2 sin(1 + x)

From a user point of view, the expression could be seen as a tree with, as

root, the dyadic operator +. Using the commands op and nops, we can

explore the apparent tree structure of the expression. In our example, we

have:

> nops(E);

2

> op(0,E);

+

> op(1,E);

ln(1 + x)

> op(2,E);

-2 sin(1 + x)

Thus using a sequence of op(op(op(…))), we can get a conceptual

representation of the expression as below:

+

ln *

+ * sin

1 x 2 -1 +

1 x

Nevertheless, this is not the true internal representation (i.e., in MAPLE)

of the expression, which is in fact a little more complex but also more

efficient. Technically speaking, the model for the internal representation is

what is called a DAG
4
, which allows the elimination of any common sub-

expression (i.e., we only represent, and compute, once any given sub-

expression which appears several times inside the main expression). It is

difficult to see directly this representation in MAPLE. However, using the

command dismantle (which we need to load with readlib(dismantle)),

we can get a glimpse of the DAG structure. For instance, using our previous

example, we get:

> dismantle[dec](E);

SUM(136478368,5)

46 Chapter 2

FUNCTION(136040888,3)

NAME(135425704,4): ln #[protected]

EXPSEQ(136609520,2)

SUM(135549672,5)

INTPOS(135407372,2): 1

INTPOS(135407372,2): 1

NAME(135426280,4): x

INTPOS(135407372,2): 1

INTPOS(135407372,2): 1

FUNCTION(135443776,3)

NAME(135426680,4):sin # [protected]

EXPSEQ(136609520,2)

SUM(135549672,5)

INTPOS(135407372,2): 1

INTPOS(135407372,2): 1

NAME(135426280,4): x

INTPOS(135407372,2): 1

INTNEG(135407380,2): -2

The option dec allows us to identify the memory address (inside

MAPLE) of the objects. For instance, an expression of the type

SUM(135549672,5) means that we have a sum and its result will be put at

the (memory) address 135549672. As we can see, the quantity 1 + x is put at

this address and thus is computed only once. And so is ln(1 + x) (at the

address 136040888). If another procedure uses this quantity, then it will

point to this address. In order to understand this notion, we will digress

slightly, and use a simple example:

> B:1n(1+x)^2;

B := ln(1 + x)
2

> dismantle [dec](B);

PROD(136082120,3)

FUNCTION(136040888,3)

NAME(135425704,4): ln # [protected]

EXPSEQ(136609520,2)

SUM(135549672,5)

INTPOS(135407372,2): 1

INTPOS(135407372,2): 1

NAME(135426280,4): x

INTPOS(135407372,2): 1

INTPOS(135407388,2): 2

No surprise there; the variable B ‘points’ to the expression ln(1 + x)

previously defined in E. If we set x : = 3, since it is an integer we should

have an immediate evaluation and B should be equal to ln(4)
2
; but doing so,

B will point to a new address. Here is the session:

A CAS as an Assistant to Reasoned Instrumentation 47

> addressof(B);

136082120

> B;

ln(1 + x)
2

> addressof(x);

135426280

> x:=3;

x := 3

> addressof(x);

135407404

> B;

ln(4)
2

> addressof(B);

136154348

> E;

ln(4) - 2 sin(4)

> dismantle [dec](B);

PROD(136154348,3)

FUNCTION(136154236,3)

NAME(135425704,4): ln # [protected]

EXPSEQ(135824692,2)

INTPOS(135407420,2): 4

INTPOS(135407388,2): 2

> dismant1e [dec] (E);

SUM(135484800,5)

FUNCTION(136154236,3)

NAME(135425704,4): 1n # [protected]

EXPSEQ(135824692,2)

INTPOS(135407420,2): 4

INTPOS(135407372,2): 1

FUNCTION(136324224,3)

NAME(135426680,4): sin # [protected]

EXPSEQ(135824692,2)

INTPOS(135407420,2): 4

INTNEG(135407380,2): -2

We have used implicitly the command addressof in order to get the

(memory) address of a MAPLE object (which we can see in the printing of

dismantle). As we can see, the structure of the expression is left unchanged

(B is still a sub-expression of E, and the DAGs are unchanged too), but the

addresses have changed. As a matter of fact, MAPLE (as other CAS) uses an

internal table for its objects, which maps each object to an address. When

the value of an object changes, the table of addresses is updated, but losing

the expressions already present in the memory. In our example, the address

48 Chapter 2

which corresponds to the expression ln(1 + x) is still there. Indeed, if we

revert x to being a formal variable, we get our initial values:

> x := ’x’;

x := x

> E;

ln(1 + x) - 2 sin(1 + x)

> B;

ln(1 + x)
2

> addressof(E);

136478368

> addressof(B);

136082120

This illustrates the value of the DAG representation and its efficiency. Its

downside is the memory consumption. The reader will find further

discussions of this topic in Giusti & al (2000) and at the end of Chapter 2 of

Gomez & al (1995) and in Nizard (1997).

As a final point, we will show
5

how the DAG structure is suitable for

computing formal derivation of an expression. Suppose we want to

differentiate (formally) the symbolic expression:

g(x) = 2xe
x

2

sin(e
x

2

) .

Its DAG representation is given by:

a1 = x,

a 2 = a1
2 ,

a 3 = e a 2 ,

a 4 = sin(a 3),

a 5 = a 3a 4 ,

a 6 = a1a5 ,

a 7 = 2,

a 8 = a 7a 6 .

Then, we get the derivative of g by a formal derivation of each node of

the DAG, resulting in a new DAG which is the associate to the derivative of

g (say, with respect to x). If we denote by this formal derivation, then

using the basic rules, we have:

A CAS as an Assistant to Reasoned Instrumentation 49

a1 = 1,

a2 = 2a1 a1,

a3 = ea2 a2,

a4 = cos(a 3) a3,

a5 = a3 a4 + a4 a3,

a6 = a1 a5 + a5 a1,

a7 = 0,

a8 = a7 a6 + a6 a7

We should notice the technical simplicity of this approach, which is

independent of the choice of DAG structure.

Despite the fact that our data structure is efficient, it does not mean that

we can always show that something which should be zero is really zero. In

the same way, we cannot put all the ‘special identities’ in the CAS. For

instance, in MAPLE, the expression sin
2

x + cos
2

x = 1 is not ‘equal’ to l,

even if x is assumed to be a real number. On the other hand, simplify

‘knows’ the identity:

> restart;

> a:=cos(x)^2+sin(x)^2;

a := cos(x)
2
+ sin(x)

2

> is(a=1);

FAIL

> eval(a);

cos(x)
2
 + sin (x)

2

> assume(a,real):eval(a);

cos(x~)
2
+ sin(x~)

2

> x := ’x’:simplify(a);

1

But other (in fact most) well known identities cannot be reduced (even

with simplify).

> restart;

> b:=arccos(x)+arcsin(x);

b :=arccos(x) + arcsin(x)

> simplify(b);

arccos(x) + arcsin(x)

But, we can use MAPLE to investigate this identity.

> diff(b,x);

0

50 Chapter 2

> eval(subs(x=0,b));

1/2 Pi

As a general fact, the procedures of normalization or simplification are

rather limited. On one side, we cannot put all the ‘special identities’ in a

computer, and on the other we often have multiple choices for the

simplification (technically, speaking it is a rewriting problem). From a

theoretical point of view, we have a kind of decidability limitation. Indeed,

Richardson (1968) has shown that for the class R defined as the closure of

rational functions of Q (p, ln(2), x) under the action of sine, exponential and

absolute value maps, the predicate E = 0 is ‘recursively indecidable’ for

E Œ R. Here the notion of decidability is relative to the theory of formal

languages and grammars. A variation of this result to symbolic integration is

given in Davenport & al (1987, p.168).

In practice, this is far less limiting than we might imagine. First, a lot of

functions belong to a class for which decidability is established, and

furthermore, there exist probabilistic methods which can be used efficiently

in such settings. Nevertheless, this shows that a ‘perfect’ CAS, able to

simplify ‘ideally’ any expression is a pure dream.

2. BASIC COMPUTATIONS AND LIMITS

While the main target users of a tool such as DERIVE are at high school

level, this is quite different for MAPLE and other general CAS, which are

designed for the engineer, the scientist and the researcher. Thus, such

software is designed with generality in mind, and this can have some

undesirable side effects for the student. We give a concrete example below:

> f:=x->evalf(x^(1/3));

f :=x -> evalf(x
1/3

)

> f(-1);

.5000000000 + .8660254038 I

In general, and as seen in the classroom by the author, the student

expects to get f(–1) = –1. But, the explanation is quite simple; it is enough to

think complex! Indeed, if we search for a solution of the form e
iq, we

reasonably get q = p
3 , and it is this solution that the CAS gives. Most of the

system operates, by default, on the complex numbers, as is also the case for

advanced pocket calculators. Thus, we should show some caution when we

use these tools, in particular in the classroom. Most of the time, problems

A CAS as an Assistant to Reasoned Instrumentation 51

can be solved by giving some help to the system. Here is a simple example:

let a be a positive real number, and p an arbitrary real number. Set:

b = log
a
 (a

p
2

a
p+1)

Taking account of the hypothesized characteristics of a and p, we should

have b = p
2

– p – 1. But the expression is not simplified into this form by

MAPLE, mainly due to the fact that, for the system, a and p are complex

numbers. We need then to make our further assumptions clear to the system:

> b:=log[a]((a^p)^p/a^p/a);

 (a
p
)
p

ln (------)

a
p
 a

b := ----------

ln(a)

> simplify(b);

ln((a
p
)
p
 a
(-p -1)

)

ln(a)

> assume(a>0);

> simplify(b);

-ln(a˜) + ln((a˜
(p - 1)

)
p
)

ln(a˜)

> assume(p,real);

> simplify(b);

p˜
2
 - p˜ -1

2.1 Computation of Limits

Taking limits of functions or of sequences is one of the most important

notions of analysis. Hence, the behavior of CAS in this particular area is of

prime interest. Several approaches have been developed to perform this kind

of computation, and they are detailed in the works of Gruntz (1996, 1999).

The first approach is what we can call the ‘heuristic method’. In short, we

use as main tool the Bernouilli de l’Hôpital rule
6

(which we will denote by

BdH in the remainder of the text). The heuristic involves deciding how

many iterations of the rule will be applied. Unfortunately, this method has

several gaps. First of all, there are many types of expression which remain

difficult to compute after applying the BdH rule, and furthermore, applying

52 Chapter 2

BdH could increase the complexity of the expressions and thus the

computations.

The second approach consists of using power series expansions (mainly

Taylor expansions). This method is quite systematic, but it fails when:

- a zero expression is not detected by the system as being zero;

- there are an infinity (or at least a ‘huge number’) of zero terms in the

power expansion. Such a situation appears when we compute the sum of

functions, which could result in infinite cancellations;

- there are one or several parameters in the expression.

The first point, as already discussed, is very difficult in practice (Gruntz

1996, § 7.2; 7.3). A possible solution, depending of the type of expression, is

to redefine the zero test used by the CAS. For instance, with MAPLE, it is

done via the command Testzero, which by default uses the standard

normalization procedures. An example is given later. Another possibility is

to use some probabilistic method to perform the test.

The second point is well known to undergraduate students and is mainly

related to the order of the power expansion; several methods exist to deal

with this problem. The last point is more difficult in practice, and will

mostly require use of heuristics.

To the best of our knowledge, DERIVE (and so the TI-92) uses a

heuristic approach for the computation of limits, while MAPLE uses power

series expansion methods. As we will test out below (and as we can see in

the examples given in Wester 1999, p.166 and 168), CAS are quite fragile

on limit computations. It is likely that the teacher (and the user) will need to

take a lot of precautions, and in particular will need to know what to expect

from the system. This is a typical situation where reasoned instrumentation

is important.

We will now give several examples from a MAPLE session (in

command line), that we will explain in detail at the end, and we will

conclude by a discussion of the numerical approach to limit computations.

Most of the following examples are extracted from or inspired by Wester

(1999) and Gruntz (1996).

> # Example 1

> restart;

> # problem of the order

> limit((sin(tan(sin(x)^7))-tan(sin(sin(x)^7)))/x^49,x=0);

sin(tan(sin(x)
7
))- tan(sin(sin(x)

7
))

lim ------------------------------------

x -> 0 49

x

> Order;

6

A CAS as an Assistant to Reasoned Instrumentation 53

> Order:=50;

Order := 50

> limit((sin(tan(sin(x)^7))-tan(sin(sin(x)^7)))/x^49,x=0);

-1

--

30

> # Example 2

> restart;

> A:=(sqrt(8)*(arccos(1/3+h)-arccos(1/3))/3/h)^2;

(arccos(1/3 + h) - arccos(1/3))
2

A :=8/9 --------------------------------

h
2

> limit(A,h=0);

infinity

> series(A,h=0,1);

8/9 (1/2 Pi - arcsin(1/3) - arccos(1/3))
2
 h
-2
 -

4/3 (1/2 Pi - arcsin(1/3) - arccos(1/3)) 2
1/2

h
-1

+

(-1/4 (1/2 Pi - arcsin(1/3) - arccos(1/3)) 2
1/2

 +1) + 0(h)

> # most of the terms in the above expression should be zero!

> # Example 3

> restart;

> A :=ln(h)/(ln(h)+sin(h));

ln(h)

A := ---------------

ln(h) + sin(h)

> limit(A,h=infinity);

infinity

> series(A,h=infinity,2);

> Error, (in asympt) unable to compute series

> A1:=1/(1+sin(h)/ln(h));

1

A1 := ----------

sin(h)

1 + ------

ln(h)

> limit(A1,h=infinity);

infinity

> limit(1+sin(h)/1n(h),h=infinity);

1

> # this is in fact a problem of operations on the limit!

>

> # Example 4

> restart;

> C:=z/(sqrt(1+z)*sin(x)^2+sqrt(1-z)*cos(x)^2-1);

54 Chapter 2

z

C := ---

(1 + z)
1/2

 sin(x)
2
 + (1 - z)

1/2
 cos(x)

2
 - 1

> limit(C,z=0);

0

> # wrong result !

> # trying to explain the behavior

> series(C,z=0,2);

1

-------------------- z + 0(z
2
)

sin(x)
2
 + cos(x)

2
 - 1

> # the coefficient in z is in fact infinity!

> # it is again a problem of testing equality to zero

> # Here is a way to solve the problem via some re-writing

> restart;

> Testzero:=t -> evalb(normal(convert(t,exp))=0);

Testzero := t -> evalb(normal(convert(t, exp))=0)

> C:=z/(sqrt(1+z)*sin(x)^2+sqrt(1-z)*cos(x)^2-1);

z

C := ---

(1 + z)
1/2

 sin(x)
2
 + (1 -z)

1/2
 cos(x)

2
 - 1

> limit(C,z=0);

2

sin(x)
2
 - cos(x)

2

> # correct result!

> # Example 5

> restart;

> F:=(ln(x)^2*exp(sqrt(ln(x)*ln(ln(x))^2\

>)*exp(sqrt(ln(ln(x)))*ln(ln(x)))^3))/sqrt(x);

1n(x)
2
 exp(ln(x)

1/2
 ln(ln(x))

2
) exp(ln(ln(x))

1/2
 ln(ln(ln(x)))

3
)

F:= ---

x
1/2

> limit(F,x=infinity);

0

> # which is also correct.

Comments

Example 1 illustrates the classic problem of ‘guessing’ in which order we

need to perform the power series expansion in order to remove the

indeterminate form. We should notice that computing the power series

expansion at the start with a systematically large order is costly in terms of

running time, and we also need to take this into account.

A CAS as an Assistant to Reasoned Instrumentation 55

Example 2 is a ‘test to zero’ problem. The limit computed by MAPLE is

incorrect. In order to understand what is going on, we do a power series

expansion, and we notice that the method fails because the classical relation:

p

2
= arccos

1

3
+ arcsin

1

3
,

is not know by the system (cf. previous section). In theory, the power series

expansion should look like:

series(A,h = 0,1) = 1+O(h),

and we should conclude that the limit is 1 (correct answer). Both examples

are correctly computed by DERIVE (TI-92), and as an exercise for the

reader, we can check (with MAPLE for instance) that both limits can be

performed with the BdH rule.

Example 3 is of a different type. Indeed, it is straightforward to show that

the limit is equal to 1. Surprisingly enough, DERIVE gives the correct

answer. But MAPLE fails due to the asymptotic expansion of the expression

(it is the sine which is the culprit here). Transforming the expression does

not help, despite the fact that MAPLE can compute easily that:

hÆ +•
lim (1+

sin(h)
ln(h)

) = 1 .

This is in fact a simple problem of operations on the limits. Since the

limits of the numerator and denominator exist and are equal to 1, it should

be possible to conclude that the limit of the expression is 1. Again, DERIVE

computes this limit correctly, most likely by performing some basic

operations on the limit.

Example 4 is of the same type as Example 2. The classical relation

sin
2

x + cos
2

x = 1 is not known by the system and generates a singularity in

the power series expansion. Here, the proposed solution is a modification of

the “test to zero”, by reprogramming the procedure Testzero with a more

suitable normalization. Then, the computation can be done correctly. We

should notice that we can get the limit directly via BdH, and thus DERIVE

gets the correct answer immediately.

However, if in the expression C we replace x by 1/x and z by exp(–x),

with x Æ + , then MAPLE gives a correct answer, namely –2, while

DERIVE is unable to evaluate the expression.

Example 5 is straightforward for MAPLE, but is unsolved by DERIVE

which remains in “Busy” position. It is in fact a typical example of a limit

which is cumbersome for the heuristic approach. We can check that most of

the limits (Wester 1999, p.166 and 168) are difficult for DERIVE.

56 Chapter 2

2.2 Numerical limit vs. Symbolic limit

We might think that the computation of limits should be easily done via

numerical evaluation of the function in the neighborhood of the point, which

could be given by a numerical sequence of points in this neighborhood. This

possibility is indeed implemented in MAPLE, and can be called by the

command evalf(Limit()). For examples 2 and 1, we get:

> restart;

> A:=(sqrt(8)*(arccos(1/3+h)-arccos(1/3))/3/h)^2;

(arccos(1/3 + h) - arccos (1/3))
2

A :=8/9 ----------------------------------

h
2

> evalf(Limit(A,h=0));

1.000000000

> evalf(Limit((sin(tan(sin(x)^7))- tan(sin(sin(x)^7)))/x^49,

x=0)); Error, (in evalf/limit/levinu) invalid cancellation of

infinity

As we can see, while we get a correct answer for Example 2, Example 1

is still problematic. In the same way, it is difficult to get a numerical

estimate of the limit at infinity of a general function.

Furthermore, new problems could arise, as shown with the example

below (Gruntz 1996, p.4-7).

> restart;

> C :=1/x^(ln(ln(ln(ln(1/x))))-1);

1

C := --------------------------

x
(1n(1n(1n(1n(1/x)))) - 1)

> evalf(subs(x=10^(-3),C));

.00005602749469

> evalf(subs(x=10^(-6),C));

.6146316300 10
-6

> evalf(subs(x=10^(-12),C));

.1528656745 10
-9

> evalf(subs(x=10^(-24),C));

.7787481717 10
-16

> evalf(subs(x=10^(-80),C));

.1401026662 10
-39

> # Is the limit 0...?

> # 10^80 is quite close to the number of atoms in our

universe...

>

A CAS as an Assistant to Reasoned Instrumentation 57

> limit(C,x=0,right);

infinity

> # oops !

>

A plot of the function would confirm the ‘numerical evidence’, but the

result given by the symbolic procedure is in fact correct (Exercise left to the

reader). Even increasing the number of digits will not change the numerical

evaluation. Indeed, for 1/x large (e.g., 10
80

), the iteration of ln diminishes

tremendously the effect of 1/x and thus the expression C behaves almost as

x1-e
 with ‘ e small’, which gives evidence for the ‘limit 0’. But, in order to

suppress the effect of the iteration of ln, we need to take x < e
-eee

, or say x

smaller than 10
-1656521

…(sic!)

3. SYMBOLIC INTEGRATION

This is one area where the CAS is a genuinely valuable tool. Due to the

ubiquity of integration, both in mathematics and the sciences in general, we

often have to perform antiderivation (i.e., symbolic integration) in order to

solve the problem. For several years, physicists and engineers had to use

huge tables of antiderivatives, also well known to contain several errors. But

CAS are particularly efficient in this task, due to the fact that we have

reasonably efficient algorithms, which are consequences of mathematical

results often deep and unknown to most mathematicians. The goal of this

section is to describe the methods, and give some examples of reasoned

instrumentation. We heartily suggest that the reader look at Davenport & al

(1987, Chapter 5) for further investigations.

Usually, the hand computation of antiderivatives is strongly based on

heuristics (inherited from personal knowledge) such as: use of tables, change

of variables, integrating by parts, use of multidimensional integrals, and so

on. As pointed out in Gomez & al (1995, Chapter 9, p.227): “These methods

often allow us to find an antiderivative quite quickly, but if they fail you

cannot conclude”. The methods used by the CAS are both heuristic and

algorithmic. The result depends strongly on the type of function that we are

integrating. In particular, for a given class of functions, a failure of the

procedure is in fact a proof that the antiderivative cannot be expressed in

terms of ‘elementary’ functions. We will begin by giving definitions and

explain the practical difficulties. We will mainly follow the approach of

Davenport (1987, Chapter 5, § 5.1.3).

58 Chapter 2

Definition 3.1

Let K be a field of functions over a field k (not necessarily a prime field).

The function q is said to be an elementary generator on K if one of the

following conditions holds:

1. the function q is algebraic over K (i.e., satisfies a polynomial

equation with coefficients in K);

2. the function q is exponential over K (i.e., for a k-derivation D of K,

there exists a e K such that D(q) = D(a)q);

3. the function q is logarithmic over K (i.e., for a k-derivation D of K,

there exists a e K such that D(q) =
D(a)

a).

Remark 3.2

Despite the fact that we can take a ‘k-derivation’ in a general sense (i.e.,

an element of Derk(K)), in practice K = k(t1,…,tn) and D =
t
i

 for a certain i,

where the tl are indeterminate. In order to get an elementary generator which

is not algebraic over K, we add formally the element exp(u) with the rules of

derivation of the exponential (idem for the log).

Now we can introduce the following notion.

Definition 3.3

Let K be a field of functions over the field k. A field K(q1,…, qn)

containing K is called a field of elementary functions over K if each qi,

i = 1,…,n, is an elementary generator over K. A function is said to be

elementary over K if it is an element of a field of elementary functions over

K.

A result of Liouville, often called ‘Liouville’s principle’, gives the

general form of the primitive of an element of a function field K if the

function is elementary over K. The crucial result which is used and its

algorithm implemented in most CAS is the theorem of Risch (Davenport &

al 1987, p.185).

Theorem 3.4 (Risch 1969)

Let K = k(x, q1,…, qn) be a field of functions over k. We suppose that

each qi+1 is either a logarithm, or the exponential of an element of k(x, q1,…

qi), and is transcendental over this field. Then there exists an algorithm

which, given an element f of K, either gives an elementary function on K

which has f as derivative, or proves that f does not admit an elementary

antiderivative on K.

This result illustrates the fact that a ‘failure’ gives non-trivial information

about the problem. The proof of the theorem of Risch is understandable at

the undergraduate level. To the best knowledge of the author, the algorithm

A CAS as an Assistant to Reasoned Instrumentation 59

of Risch implemented in MAPLE is only complete for the class of

elementary functions which are purely transcendental (no algebraic

dependency involved; for instance arcsin is not purely transcendental). Thus

we can apply the theorem of Risch only to this class of functions. For further

reading we suggest (Davenport 1987, § 5.1.8) and (Bronstein 1990, 1997).

In practice, particularly in the classroom, the main difficulty will be to

understand that a simple modification of the expression to be integrated will

result, most of the time, in an antiderivative quite different in appearance.

We will give some examples below:

> diff(sqrt(4^x+1),x);

4
x
 ln(4)

1/2 -----------

(1 + 4
x
)
1/2

> f1:=int(4^x/sqrt(1+4^x),x);

(1 + 4
x
)
1/2

f1 :=2 -------------

ln(4)

> # Here Maple identifies the derivative

> # Let us change 4^x to 2^(2*x)

>

> f2:=int(2^(2*x)/sqrt(1+4^x),x);

infinity

\

f2 := 2) GAMMA (_k2 + 1/2) (-1)
_k2

/

_k2 = 0

/ / 1n(2) \\ //

|1 - exp(- 1/2 x (1n(4) + 2 _k2 ln(4)) |1 - 4 -----------------|)|/|

\ \ ln(4) + 2 _k2 1n(4)// /\

/ ln(2) \\ /

GAMMA(_k2 + 1 (1n(4) + 2 _k2 1n(4)) |1 - 4 ------------------|| /

\ ln(4) + 2 _k2 ln(4)// /

Pi
1/2

> # oops !

> # Compare the two results ...

> evalf(series(f2,x));

.7071067812 x + .3675968038 x
2

+ .09908837872 x
3

+ .01103831202 x
4
 +

.00008501305392 x
5

+ 0(x
6
)

> evalf(series(f1,x));

60 Chapter 2

2.040278892 + .7071067810 x + .3675968036 x
2

+ .09908837866 x
3

+

.01103831201 x
4

+ .00008501305389 x
5

+ 0(x
6
)

> Digits;

10

> Digits:=20;

Digits := 20

> evalf(series(f1,x));

2.0402788931935789636 + .70710678118654752440 x + .3675968038007051968

9 x
2

+ .099088378720063520381 x
3

+ .011038312018296660770 x
4

+

.000085013053929147665047 x
5

+ 0(x
6
)

> evalf(series(f2,x)) ;

.70710678118654752440 x + .36759680380070519690 x
2

+ .0990883787200635

20388x
3

+ .011038312018296660770x
4

+ .000085013053929147665054x
5

+

0(x
6
)

>

In the above example, we can see the practical difficulty of antiderivative

computations. We can check that the results are the same up to a constant

(which is exactly
2

1n(2)
). In a classroom situation, without the help of the

teacher, it is likely
7

that the students will claim failure of the software and

will stop there. Here, the theorem of Risch says that we should anticipate a

correct result. Nevertheless, we can try to do some manipulations, in order to

see if we can avoid such difficulties:

> Q :=2^(2*x)/sqrt(1+4^x);

2
(2 x)

Q := ---------

(1 + 4
x
)
1/2

> simplify(Q);

4
x

(1 + 4
x
)
1/2

> QQ:= normal (Q, expanded);

(2
x
)
2

QQ := ---------

(1 + 4
x
)
1/2

> int(QQ,x);

(1 + 2
(2 x) 1/2

)

ln(2)

A CAS as an Assistant to Reasoned Instrumentation 61

As we can see, using simplify gives the original form of the expression.

Furthermore, the normalization with the option expanded, results in an even

simpler expression for the antiderivative. It could be wise to develop such an

approach, by using normal for instance, in order to get a ‘good’ expression

before integration.

Here are other illustrations of the theorem of Risch:

> int(1/ln(x^2+1),x);

/

| 1

| --------- dx

| ln(x
2
 + 1)

/

This shows, assuming no errors in the software or the hardware, that

1

ln(x
2+1)

 has no elementary antiderivative, as this function is purely

transcendental. But the situation is less simple, with non purely

transcendental elementary functions. Here is an example from Gomez (1995,

p.235-236):

> f3:=int(arcsin(x)^2,x);

/

|

f3 := | arcsin(x)
2
 dx

|

/

But this is a classic antiderivative. We need to help the system. For this

purpose, we can do an integration by parts using the package student.

> intparts(f3,arcsin(x)^2);

/

| arcsin(x) x
2

arcsin(x)
2
 x - | 2 ------------ dx

| (1 - x
2
)
1/2

/

> intparts(%,arcsin(x));

/

|

arcsin (x)
2
 x + 2 arcsin(x) (1 - x

2
)
1/2

 + | -2 dx

|

§

62 Chapter 2

> value(%);

arcsin(x)
2
 x + 2 arcsin(x) (1 - x

2
)
1/2

 - 2 x

Hence, by interacting with the CAS, we get a correct answer. This

indicates the right way to use a CAS, and it is what the student will have to

learn.

3.1 Difference between antiderivative and indefinite

integral

Another aspect, often neglected, is the study of the result of the

computation of an antiderivation. Indeed, in the usual settings, we want to

compute a definite integral of a function which in most cases will be

continuous on the interval of integration. Thus, we expect the antiderivative

of the function integrated to also be continuous (and even more).

Unfortunately, in many cases, it is not. As we have seen in the previous

section, the computation of the antiderivative is a purely algebraic process.

We just ask to find an element g of a differential field such that D(g) = f for

the derivation D of the field. On the other hand, in a classical course on

integration, we introduce the notion of indefinite integral of a function (real

or complex variable), which is often confused with the notion of

antiderivative. To be more precise, we will give a definition of this notion:

Definition 3.5 (Jeffrey 1994, p.35)

An indefinite integral of a function f, Lebesgue-integrable on an interval

I of R, is any function G defined on I and a real number c, such that:

G(x) = f(t)dt + ca
x

Ú .

One of the main results of undergraduate courses in calculus (Riemann

rather than Lebesgue) is that the indefinite integral is an antiderivative of f.

But if f is continuous on I, so is G. However, an antiderivative is not

necessarily an indefinite integral, and the CAS gives us several examples:

> int(6/(5-3*cos(x)),x);

3 arctan(2 tan(1/2 x))

Here the result is an antiderivative on R, but fails to be continuous. As a

consequence, we cannot use this antiderivative ‘out of the box’, in order to

compute the definite integral of the function on [0,4p] for instance. The

result would be nonsense (but apparently most students are not afraid of

that). Nowadays, new heuristics and algorithms try to produce better results,

closer to an indefinite integral; Jeffrey (1994) for more details.

A CAS as an Assistant to Reasoned Instrumentation 63

4. CONCLUSION

The main point that we have tried to establish, through several examples,

is that we cannot reasonably use a CAS as a black box, in particular in the

classroom. Teachers should have sufficient knowledge of the behavior of the

CAS in order to understand the result for themselves, and also for their

students. Working with a computer always involves a risk. But, while

students will accept a system or hardware failure, they will be less inclined

to accept failure from the teacher, which will undoubtedly undermine the

often fragile trust between them. We should also take into account that a

student will often use ‘the’ worst possible strategy in order to solve a

problem; in general, this will require the teacher to improvise in order to

explain either the failure or the success of the strategy. This provides further

evidence that teachers need a sufficient knowledge of the CAS if they want

to ‘feel in control’ in the computer classroom.

Furthermore, many teachers have generally accepted ideas about the

CAS (and using CAS in the classroom) which could work against them. One

of the most prominent ideas is the belief that working with a CAS means

teaching (and training) the students how to compute (as in the classical first

undergraduate courses on calculus and algebra). Unfortunately, as already

seen in the examples discussed in this paper, this is not true. Indeed, students

need to acquire enough practical experience to develop insight on the

methods learned. For instance, this will help them to estimate the order

needed to compute a limit using power series expansions of composed

functions, or the transformations to perform in order to compute an

antiderivative. On the other hand, computing the power series expansions of

functions up to a high order as the climax of a calculus course is pointless.

This is why we believe that a reasoned instrumentation should be

preferred when we have to use CAS in the classroom. The ‘intelligent usage’

of a CAS in mathematical science courses (or in other sciences) is not an

easy task, and in particular is not given. This implies the necessity of

developing specific classroom activities and specific exercise sheets, well

adapted to the task, showing clearly the value of the CAS either as a

platform for experimentation or as an assistant, and well integrated into the

main course.

Philippe ELBAZ-VINCENT (pev@math.univ-montp2.fr) is an assistant

professor at the Université Montpellier II (France). His research area is

algebra and number theory, in which he develops computational methods.

64 Chapter 2

NOTES

1. The examples given have been produced with the version V release 5.1 of MAPLE under

GNU/LINUX-2.4 (architecture i686) and SOLARIS 5.8 (architecture Ultrasparc II) and

with the DERIVE version implemented on the TI-92 pocket calculator (Texas

Instruments).

2. This last function is undocumented…

3. We can access the components of this expression via the command op, and nops to get

the number of components (as coded by MAPLE).

4. Directed Acyclic Graph.

5. Based on an example from Ole Stauning for the software FADBAD of automatic formal

derivation.

6. The famous rule of the Marquis de l’Hôpital (1661-1704) is in fact due to Johan Bernoulli,

1667-1748, cf.

(http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Bernoulli_Johann.html).

7. As experienced several times by the author.

A Cas as an Assistant to Reasoned Instrumentation 65

REFERENCES

Bronstein M. (1990) On the integration of elementary functions, Journal of Symbolic

Computation 9(2), 117-173.

Bronstein M. (1997) Symbolic Integration I - Transcendental Functions, Algorithms and

Computations in Mathematics (Vol. 1). Heidelberg: Springer-Verlag.

Crandall R.E., Mayer E.W. & Papadopoulos J.S. (1999) The twenty-fourth Fermat number is

composite, preprint.

Davenport J., Siret Y. & Tournier E. (1987) Calcul formel: systèmes et algorithmes de

manipulation algébrique. Paris: Masson.

Dumas P. & Gourdon X. (1997) Maple: son bon usage en mathématiques. Berlin: Springer-

Verlag.

Fortin P. Introduction au calcul formel. Paris: Texas Instruments.

Giusti M., Hägele K., Lecerf G., Marchand J. & Salvy B. (2000) Computing the Dimension

of a Projective Variety: the Projective Nœther Maple Package, Journal of Symbolic

Computation 30(3), 291-307.

Gomez C. Salvy B. & Zimmermann P. (1995) Calcul formel: mode d’emploi, exemple en

Maple. Paris: Masson.

Gruntz D. (1996) On computing Limits in a Symbolic Manipulation System, Ph.D Thesis

ETHZ.

Gruntz D. (1999) Computing Limits in Computer Algebras Systems, in M.J. Wester (Ed.),

Computer Algebra Systems: A practical guide (pp. 153-170). Wiley.

Jeffrey J.D. (1994) Integration to obtain expressions valid on domains of maximum extent, in

M. Bronstein (Ed.), Proceeding of ISSAC 93 (pp. 34-41). ACM Press.

Jeffrey J.D. & Rich A.D. (1999) Simplifying Square Roots of Square Roots by Denesting, in

M.J. Wester (Ed.), Computer Algebra Systems: A practical guide (pp. 61-72). Wiley.

Kamerich E. (1998) A Guide to Maple. New York: Springer-Verlag.

Kofler M. (1997) Maple: An Introduction and Reference. Addison Wesley.

Lazarus A.J. (1994) Implications of Computational Mathematics, in W. Gautschi (Ed.),

Mathematics of Computation 1943-1993: A Half-Century of Computational Mathematics,

Proceeding of Symposia in Applied Mathematics 48 (pp. 561-564). AMS.

Nizard A.F. (1997) Structure des objets Maple, exposé stage de Luminy, option Info des

classes de prépa, CIRM (http://pauillac.inria.fr/~quercia/documents-info/Luminy-

97/nizard/articl97.ps).

Plestsch B. (1999) Computer Algebra in Mathematics Education, in M.J. Wester (Ed.),

Computer Algebra Systems: A practical guide (pp. 285-322). Wiley.

Richardson D. (1968) Some Undecidable Problems Involving Elementary Functions of a Real

Variable, The Journal of Symbolic Logic 33(4), 414-520.

Trouche L. (1998) Expérimenter et prouver: faire des mathématiques au lycée avec des

calculatrices symboliques. Montpellier: IREM, Université Montpellier II.

Von zur Gathen J. & Gerhard J. (1999) Modern Computer Algebra. Cambridge University.

Wester M.J. (Ed.) (1999) Computer Algebra Systems: A practical guide. Wiley.

