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Research Context and Summary of Research
Papers

1 Field of Research

The explanation of realized mortality as well as the prediction of future mortality are key
challenges in many different fields such as, for example, demography or actuarial sciences. This
cumulative thesis contributes to the literature about these questions.

The distribution of human lifetimes has changed significantly during the last centuries. One
indication of this is the steadily increasing mean of this distribution, i.e. the life expectancy
at birth (see, e.g., Oeppen and Vaupel, 2002, who observe a linearly increasing trend in the
world record life expectancy). However, the distribution of human lifetimes has evolved in
a complex manner and it cannot be characterized by its mean only. Therefore a variety of
different statistics has been proposed to measure these changes. For example, Kannisto (2001)
suggests the modal length of life1 as an alternative measure for the average human lifetime.
Other statistics focus on the dispersion of the distribution of human lifetimes. For example,
Wilmoth and Horiuchi (1999) give an overview of some of them. With the application of these
new statistics also new terms – so-called mortality scenarios – have been created which are
designed to describe different evolution patterns in the distribution of human lifetimes, for
example “rectangularization of the survival curve” (Manton and Tolley, 1991), “compression
of mortality” (Wilmoth, 2000), or “longevity extension” (Cheung et al., 2005). Most of the
essays in the demographic literature on the evolution of the distribution of human lifetimes cover
questions on the development of statistics to determine the presence or absence of particular
mortality scenarios (see, e.g., Cheung et al., 2005; Kannisto, 2000, 2001; Wilmoth and Horiuchi,
1999) and on the application of existing frameworks to investigate realized mortality (see, e.g.,
Canudas-Romo, 2008; Cheung and Robine, 2007; Nusselder and Mackenbach, 1996; Ouellette
and Bourbeau, 2011; Robine et al., 2008).

In addition to the aforementioned literature there is a stream of not necessarily demographic
literature on the development of mortality models. Such mortality models are a valuable tool to

1The modal length of life is defined as the age where the density function of the distribution of human lifetimes
reaches its maximum.
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describe the distribution of human lifetimes and the changes exhibited over time. One of the
oldest mortality models of this kind is the “law of mortality” by Gompertz (1825). This model
has been modified and extended several times. Pollard (1987) gives a comprehensive review of
mortality models which were developed up until the 1980s. Most of these mortality models are
also used to forecast future mortality. During the most recent decades a new class of mortality
models has emerged – the so-called stochastic mortality models. For example, the mortality
models by Lee and Carter (1992) or Cairns et al. (2006) are widely used in many applications
today. Overviews of more recent mortality models are given by Booth and Tickle (2008) or
Cairns et al. (2008).

The evolution of the distribution of human lifetimes in the highest age range is of special
interest to the demographic literature. Essentially two different and contradictory cases for
how the shape of the distribution of lifetimes evolves in the highest age range have been made:
Either it has a fixed right endpoint (see, e.g., Dong et al., 2016; Fries, 1980; Gavrilov and
Gavrilova, 2011), which implies that there is a maximum attainable age. Or the probability
of death flattens in the highest age range (see, e.g., Barbi et al., 2018), which implies that yet
observed record ages at death can be outperformed in theory.2 Often such claims are based
on the application of mortality models to mortality data for the highest age range. However,
the question on the existence of a finite limit to human lifespan is often already implied by the
model’s design.3 Instead of using more or less sophisticated mortality models, more advanced
methodical approaches are needed to decide on this question and this is a typical question of
extreme value theory. One of the first attempts to employ methods from extreme value theory
to estimate the maximum human lifespan can be found in Aarsen and de Haan (1994). More
recently similar methods have been applied to data of many different countries (see, e.g., Gbari
et al., 2017; Hanayama and Sibuya, 2015; Rootzén and Zholud, 2017; Weon and Je, 2009).

The research papers included in this thesis contribute to the demographic literature on the
classification of changes in the distribution of lifetimes by developing a unique classification
framework for mortality evolution patterns, provide new methodical approaches for the estimation
of the maximum possible human lifespan, and combine a demographic understanding of realized
mortality evolution patterns with a new mortality model, which can be used to forecast future
mortality. In this sense this thesis links the past with the future of mortality.

2If a maximum attainable age exists, it might increase over time. This sometimes makes the differentiation
between these two concepts difficult in practice. For a given population in a given year, however, the existence
of a maximum attainable age implies a probability of zero for outliving this age. In contrast, if this age does
not exist (which is the second case), the probability for survival to any (even infinitely high) age might be
very small but always is greater than zero.

3For example, in every application of the Gompertz law of mortality the force of mortality reaches the value of
one at some age. Thus, this model does not even hypothetically allow for an infinite human lifespan.
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2 Motivation and Objectives

Assumptions about future mortality are necessary for example for social security systems,
pension funds, and life insurers and it is not sufficient to know people’s future average lifetime,
i.e. forecasts of the life expectancy, only. To have an option on how much uncertainty is involved
in their planning and reserving an estimate of the future distribution of human lifetimes is of
particular interest. Usually mortality models are used to project future mortality, but the choice
and the calibration of such models is challenging in practice. To meet this challenge the realized
changes of the distribution of lifetimes should be analyzed. Only if we understand these past
trends, assumptions about future mortality usually can be derived.

There is a wide range of literature which covers the question of how realized mortality has
changed over time and how these changes can be classified. As mentioned above, many different
mortality scenarios have been developed to explain these patterns. Most of them can be easily
illustrated by changes in the deaths curve or the survival curve.4 However, questions related to
the definition and differentiation of such mortality scenarios have hardly been discussed. Hence
often mortality scenarios are imprecise or only vaguely defined, which makes it difficult to test
the presence or the absence of a particular mortality scenario in practice. To this end, often
single demographic statistics are used. For example, Wilmoth and Horiuchi (1999) suggest the
inter-quartile range (IQR)5 as a single measure for “compression of mortality”. However, the
evolution of the deaths curve is too complex for a single statistic being sufficient to characterize
it. Therefore, such approaches are debatable. The matter is further complicated as the mortality
scenarios are not mutually exclusive, as is sometimes assumed in the literature. For example,
Canudas-Romo (2008) claims that the presence of “shifting mortality” rules out the presence of
“compression of mortality” and thus does not allow for the coexistence of two or more mortality
scenarios – although this is what can be observed in practice. Last but not least, effects of
the chosen age range frequently are neglected, but it is possible to observe different mortality
scenarios in different age ranges (see, e.g., Myers and Manton, 1984). For example, pension
funds and life insurers should know the mortality scenario of their retirees and they might get a
wrong picture if they analyze the trends in the deaths curve’s evolution on the complete age
range. These issues lead to the first research question:

Research Question 1: How can we describe and measure the changes the deaths
curve exhibits over time and how can these changes be classified? How can we define
mortality scenarios, so that this definition is unique, intuitive but precise, captures any
observed mortality evolution, allows for the coexistence of mortality scenarios, and is

4The deaths curve gives the number of deaths per age while the survival curve gives the number of survivors
for each age. Thus, these two curves directly correspond to each other.

5The inter-quartile range is defined as the distance between the 75% and the 25% quantile of the distribution
of lifetimes.
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applicable to different age ranges? How can we estimate the presence or absence of a
particular mortality scenario?

Once a clear definition of mortality scenarios is made, a further, natural question to ask is what
mortality scenarios have prevailed in the history in different countries, sexes, and age ranges,
and how these scenarios can be compared. Such questions for example are relevant whenever
(sub-)populations are jointly modeled for the purposes of the unisex calculation of life insurers
or for the application of multi-population mortality models, but they are hardly covered in
literature. This leads to the second research question:

Research Question 2: Which mortality scenario prevails in which region of the world
and what are the differences in the mortality evolutions between males and females or
between different age ranges? How can detected trends in the deaths curve’s evolution
be compared between different (sub-)populations?

The question how to estimate demographic statistics in practice is not always clear and sometimes
preparation of the input data is needed.6 In particular, the estimation of demographic statistics
which capture the right tail of the deaths curve is challenging because in this extreme age range
mortality data is typically sparse and often censored. Thus, for example, the estimation of the
right endpoint of the deaths curve’s support is difficult. Often this statistic is estimated using
mortality models (see, e.g., Barbi et al., 2018; Gavrilov and Gavrilova, 2011) but as mentioned
before this approach is debatable as it depends on the design of the respective mortality model.
The question of how the right endpoint of the distribution of human lifetimes can be estimated
in the presence of sparse and censored mortality data is a typical question of extreme value
theory. If, however, the underlying mortality data is right censored, methods of classical extreme
value theory do not yield reasonable estimates. Moreover, if the data is (too) sparse, the sample
size might become too small to obtain statistically significant results. However, in the field of
censored extreme value theory there are methods which allow estimating the right endpoint of a
distribution’s support in presence of random right censoring in principle (see Einmahl et al.,
2008) but the underlying data has to be chosen carefully: For example, Dong et al. (2016) found
“evidence to the limit of human lifespan”, but they only used death counts for their analysis.
This completely ignores people who are still alive – and are probably even older than the oldest
dying person. This leads to the third research question:

Research Question 3: In the presence of sparse and censored old-age mortality data,
how can we determine the existence of a limit to human lifespan without application
of mortality models with predefined assumptions on the existence of a maximum
attainable age? In case of existence, how can it be estimated? How can we select
proper mortality data to examine these questions?

6For example, Ouellette and Bourbeau (2011) smooth their input data prior to the estimation of demographic
statistics, which in practice often is necessary.
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Given the mortality scenario and the evolution of the corresponding demographic statistics
of a particular population, assumptions on future mortality can be derived, for example by
extrapolating the most recent trends in the respective statistics. However, this only yields
some characteristics of a potential future deaths curve, whereas in most practical applications,
forecasts of complete deaths curves are needed. In this regard it is desirable that these forecasts
smoothly continue recently observed trends in demographic statistics and the deaths curve’s
changes in particular. For most mortality models this is not true as their parameters usually lack
any demographic interpretation. Hence such forecasts should be based on an extrapolation of
statistics with a demographic interpretation. Furthermore, this would allow for including expert’s
opinions to the forecasts of future mortality. This leads to the fourth research question:

Research Question 4: How can we make use of an understanding of recent trends
in the deaths curve’s changes when forecasting future mortality?

The four research papers included in this thesis examine the aforementioned research questions.
In the next section we provide a detailed summary of these papers.

3 Summary of Research Papers

Research Paper 1: Extension, Compression, and Beyond – A Unique
Classification System for Mortality Evolution Patterns

In the first paper we discuss the definition of mortality scenarios and their detection on observed
mortality data. We commence with a review of previous approaches for the classification of
changes in the distribution of human lifetimes and illustrate important shortcomings inherent
in these approaches. Furthermore, we develop a classification framework for mortality evolution
patterns which is based on the deaths curve and consists of four characteristics of this curve.
Questions related to the practical implementation of the framework are discussed as well as
an example application. This article is joint work with Matthias Börger and Jochen Ruß and
has been published in Demography. It has been presented at the 2nd Annual International
Conference on Demography and Population in Athens, Greece (2015), the 11th International
Longevity Risk and Capital Market Solutions Conference in Lyon, France (2015), the IAALS
Colloquium in Barcelona, Spain (2017), and at the 31st International Congress of Actuaries
(ICA) in Berlin, Germany (2018). Furthermore, the paper has been awarded the IAALS Best
Paper Award at the ICA in 2018.

As described above, there is a variety of mostly demographic literature on the question of how
the distribution of lifetimes changes over time and how these changes can be classified. We
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discuss four major shortcomings of these approaches: First of all, most mortality scenarios are
defined imprecisely. An obvious example of this is rectangularization – a mortality scenario
which is defined by its theoretical (and hence unreachable) final state in which the survival
curve is perfectly rectangular. The survival curve can converge to this final state on different
routes, which makes this scenario definition ambiguous. Secondly, some statistics used to detect
mortality scenarios are misleading or insufficient. In particular, a single statistic can never
indicate every change of the deaths curve. Thus (probably significant) changes of the deaths
curve might remain undetected, if only one statistic is used. The same holds for the combination
of several statistics which take into account only parts of the age range, e.g. old-age mortality.
Thirdly, mortality scenarios can coexist and they are not mutually exclusive. The evolution of
the deaths curve typically is not only driven by a single process but there are several different
and overlapping processes which cause the observed changes. For example, the deaths curve
can exhibit right-shifting mortality and compression at the same time: Right-shifting mortality
can intuitively be interpreted as a horizontal shift of the complete deaths curve to the right.
On the other hand, compression can intuitively be interpreted as a vertical deformation of the
deaths curve: There must be an age range in which more and more people are dying whenever
compression prevails. Hence a coexistence of these two concepts can intuitively be interpreted
as a “diagonal deformation” of the deaths curve. This can be observed in practice.7 Finally, the
effect which the choice of the age range has on the estimation of certain statistics – and thus
on the assessment of mortality scenarios – often is ignored. It is possible to observe different
mortality scenarios on different age ranges for the same population in one time period. For
example, if the number of people dying in the younger age range decreases over time, this number
of people must die in the older age range. Consequently, we observe compression toward higher
ages. However, the probability of death in the higher age range might have stayed constant over
time for all respective ages. Thus we cannot observe compression within the higher age range
in this example and we have two different mortality scenarios in two different age ranges. In
the paper all these shortcomings are illustrated with graphical examples to make the respective
points clearer.

We develop a classification framework for mortality evolution patterns which uniquely assigns a
mortality scenario to any change of the deaths curve. This framework combines four concepts
for the change of the deaths curve over time: “shifting mortality” (see Canudas-Romo, 2008),
“longevity extension” (see Rossi et al., 2013), “compression of mortality” (see Myers and Manton,
1984), and “concentration of mortality” (see Kannisto, 2001). These concepts are considered
simultaneously so that in this framework a mortality scenario is always a four-dimensional
vector. We use one demographic statistic for each component of this vector to identify changes
of the deaths curve in the respective dimension:

7This example also illustrates why a single statistic often is not sufficient to detect this kind of evolution of the
deaths curve: Most demographic statistics either focus on horizontal or vertical deformations. Hence such
“diagonal” deformations usually cannot be captured by a single statistic.
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• Shifting mortality is linked to the age, where the largest portion of the population under
consideration dies, i.e. the modal age at death M . A significant increase in M is called
right-shifting mortality, while a significant decrease in this statistic is called left-shifting
mortality.

• Extension is linked to the length of the deaths curve’s support measured by its upper bound
which we call UB. A significant increase in UB is called extension, while a significant
decrease in this statistic is called contraction.

• Compression is linked to the distance between the observed deaths curve and a perfectly
decompressed deaths curve. The latter corresponds to a uniform distribution. The statistic
we use for this measures the size of the area between these two curves. This is what we
call the degree of inequality DoI. A significant increase in DoI is called compression,
while a significant decrease in this statistic is called decompression.

• Concentration is linked to the record number of deaths in a single age, i.e. to the number
of deaths in the modal age at death d(M). A significant increase in d(M) is called
concentration, while a significant decrease in this statistic is called diffusion.

Of course each of these statistics can remain unaltered over time. In this case the respective
component is referred to as neutral.

This classification framework eliminates the aforementioned shortcomings of previous approaches:
Each mortality scenario is defined precisely and uniquely. The used statistics are easily inter-
pretable and intuitive. Any significant change of the deaths curve is detected by at least one of
the four statistics. Owing to the design of the framework a mixed scenario prevails whenever at
least two components exhibit a significant change. Not least, the classification framework is
applicable to any age range which includes the deaths curve’s right tail.

For an application of the classification framework we suggest estimators for each of the four
statistics. This yields a time series for each statistic, but these time series are typically noisy
and have extreme outliers. Therefore we need methods to determine trends and trend changes
within these time series. To this end, we first eliminate the outliers from each time series. After
that we fit piecewise linear trends with or without jumps to the time series.8 For each part
of the time series with constant linear trend we use a set of statistical tests to determine if
the trend is significantly decreasing, increasing, or constant. This provides a four-dimensional
mortality scenario for each calendar year.

In the final section of the paper we exemplarily apply the classification framework to mortality
data for US females from 1933 to 2013. By means of this application we show that the framework
eliminates the aforementioned shortcomings of previous approaches.

8Such jumps can be caused for example by changes in data-processing methods or extreme historical events.
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In summary, in this paper we analyze existing definitions for mortality scenarios as well as
previous approaches for the assessment of these scenarios and discuss their shortcomings; based
on that we develop a new classification framework for mortality evolution patterns which
precisely defines mortality scenarios and uniquely assigns a mortality scenario to any significant
change of the deaths curve. Hence this paper answers the first part of the research questions.

Research Paper 2: A Comprehensive Analysis of the Patterns of
Worldwide Mortality Evolution

In the second paper we apply the classification framework from the first paper to a comprehensive
data set with mortality data from different countries, sexes, and age ranges, and go on to compare
the obtained mortality scenarios. This paper has been accepted for a presentation at the 2017
Living to 100 Society of Actuaries International Symposium, Orlando, FL (USA). Subsequently
the paper has been published online in the 2017 Living to 100 Monograph.

The choice of the underlying mortality data is crucial for an application of a classification
framework for mortality evolution patterns. This matter is particularly complicated when the
study focuses on the comparison between different populations, because then mortality data of
similar quality and quantity is needed for each population. The Human Mortality Database
(HMD, 2015) provides standardized mortality data of high quality for many different countries
all over the world. In this study we use sex-specific mortality data (i.e. death counts and
exposure-to-risk) from the HMD of 34 different countries.9 As this data is right censored we first
determine the force of mortality from the death counts and exposure-to-risk data and extrapolate
it to the highest age ranges for every population and period using a P-Spline approach.10

For each population we determine a time series of deaths curves for females and males and for
the age ranges starting at age 0 and 60, respectively. Moreover, we estimate the four statistics
of the classification framework for each deaths curve and determine the respective directions
of their trends (i.e. piecewise increasing, decreasing, or constant). This yields 136 time series
of four-dimensional mortality scenarios and accordingly 544 time series of one dimensional
statistics’ evolutions. To compare these time series we proceed as follows: The directions of the
trends of each time series are illustrated with a colored time bar at a glance. For each statistic
we arrange these time bars according to regional clusters to better account for geographical
proximity in the comparison of the trends. For the sake of clarity, the mortality evolution

9When we accessed the data the HMD offered mortality data for 42 different populations. However, we exclude
populations where the HMD alerts the user to the lower quality of the input data, as well as populations
with less than 40 years of data history. This leads to 34 different countries.

10For some countries the HMD also offers uncensored input data. However, our study has a focus on the
comparison of different countries and thus we need structurally homogeneous mortality data for all countries.
This is not true for the (partially uncensored) input data but for the edited data. The latter, however, is
censored.

8



Research Context and Summary of Research Papers

patterns are first analyzed for one combination of sex and age range as a reference, and thereafter
we compare them to the mortality evolution patterns of the other combinations of sex and age
range. Moreover, we develop a statistic to determine the degree to which the trends of two
respective time series of mortality scenarios coincide, which we call the relative similarity RS.
This statistic can be scaled which allows to determine the relative similarity of the time series
of complete four-dimensional mortality scenarios between populations, sexes, and age ranges.

For the discussion of the results, first of all we focus on the mortality evolution of males and the
complete age range. We find increasing trends in all four statistics in almost all populations for
the most recent decades. These trends are sometimes interrupted by considerable supra-regional
patterns, for example, a plateau in the almost global trend of right-shifting mortality in the
1960s. This can also be detected with respect to compression. The mortality scenarios for
males from the Eastern European populations and the rest of the world considerably differ
in all four statistics. By comparing the evolution of mortality scenarios between males and
females we find significant differences between sexes. In particular with respect to right- and
left-shifting mortality these differences become evident, whereas with respect to compression or
decompression they are immaterial. The disparity between sexes is higher for some Eastern
European populations (with few exceptions like Estonia and Bulgaria) and lower for mainly
Central and Western European populations (with few exceptions like Austria). The same
essentially holds for the difference between the chosen age ranges but these differences are more
distinct for males than for females.

In summary, in this paper we analyze the evolution of the mortality scenarios of many different
populations almost all over the world and highlight differences in the evolutions of female and
male mortality and two different age ranges, respectively. In addition we address questions on
how to compare time series of four-dimensional mortality scenarios. Hence this paper answers
the second part of the research questions.

Research Paper 3: The Myth of Immortality: An Analysis of the
Maximum Lifespan of US Females

In the third paper we discuss the estimation of the upper bound of the deaths curve’s support,
which is one of the statistics of the previously described classification framework. When faced
with sparse and censored mortality data in the highest age ranges, special methods are required
from the extreme value theory which we describe in this paper. Moreover, by combination of
two data sets we can exploit the respective advantages of each data set to improve the obtained
estimates. This paper is joint work with Jan Feifel and Markus Pauly.

9
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Old-age mortality data is typically sparse and often censored. We describe two examples for
this claim: On the one hand, each entry of the International Database on Longevity (IDL,
2015) relates to one individual dying in the age range beyond 110. For each entry the IDL
gives the exact date of birth and the exact age at death (in days) and each entry is validated
separately. However, for example for US females the IDL contains 309 entries only. Even though
it is regarded to fit the profile of the female US population well, the absolute number of death
counts in the IDL probably underestimates the absolute number of US females dying in this
age range (see Maier et al., 2010). On the other hand, each entry of the Human Mortality
Database (HMD, 2015) gives the number of people dying or being alive per age and calendar year.
The HMD is regarded to be complete, i.e. it contains mortality and survival data of complete
populations. Unfortunately, for the highest age range the HMD uses extrapolation techniques
and the single-age data is given only until the age 109. Thus, the HMD is censored and possibly
biased in this age range. In summary, we have two databases each with an advantage and a
disadvantage: The IDL data is sparse but exact and thus of high quality; the HMD data is
right-censored but comprehensive and thus of high quantity.

In the paper we apply different methods from the extreme value theory (EVT) to the data for
US females from each of the aforementioned databases separately. This means that first we
apply classical EVT methods to the uncensored but sparse IDL data for US females in order to
determine the existence and – in case of existence – to estimate the value of the upper bound of
the deaths curve’s support. As the IDL data for US females has a small sample size, the results
of this analysis are not statistically significant: At a confidence level of 5% we can neither prove
nor disprove the existence of a finite limit to the lifespan of US females. Furthermore, we apply
methods of the censored EVT to the comprehensive but censored HMD data for US females to
estimate UB.11 In this case we find statistically significant evidence for the existence of a finite
limit to the lifespan for US females, but the estimates are very close to the age 110 where the
HMD data is censored. This indicates that additional information on deaths beyond the age
110 would improve the estimates of the right endpoint.

This additional information can be gathered by including the information of the IDL into the
data set of the HMD. This is possible since we assume that the population recorded in the IDL
is a sub-population of the population recorded in the HMD, at least for US females. In the
paper we describe in detail how we proceed in combining these two data sets while avoiding
double counts in the combined data set (CDS). Consequently, the CDS contains deterministic
death counts at the age range beyond 110 and by including survival data given by the HMD it is
randomly right censored. Therefore, methods of the censored EVT (e.g. the methods described
11As the HMD also provides survival data, we can construct a randomly right censored database from the HMD

alone. This is based on the fact that for each survivor to a particular age we know his minimum age at death
(which is the age she survived to) but do not know the exact age at death. Therefore methods of the censored
EVT are applicable in principle. In the part of the paper where we apply these methods to the combined
data set, we discuss the applicability of this methods in more detail.
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by Einmahl et al., 2008) become applicable in principle. In the paper we describe these methods
in detail. One important condition for the application of the methods of Einmahl et al. (2008)
is that the observations in the sample are independently and identically distributed (iid). As
the CDS contains mortality data of more than two decades (from 1980 to 2003) and we know
that the deaths curve typically changes over time this assumption is debatable. However, the
proportion of the IDL data in each calendar year would be too small if we dissected the CDS
into single calendar years. We found a compromise by dissecting the CDS in overlapping time
windows of nine adjacent calendar years, i.e. from 1980–1989, from 1981–1990, and so on. This
yields the possibility to estimate the right endpoint of the deaths curve’s support on a sufficiently
large partition of the CDS (with respect to IDL data) and to check the resulting estimates
for trends. However, the sample size of the HMD data is very large and so are the sample
sizes of each window of the CDS. This would cause extreme computing times in the practical
implementation and therefore we follow a sub-sampling approach to improve the performance of
the estimation. An additional cross-validation procedure which we apply to the sub-samples
further stabilizes the estimators we use.

We determine the existence and – in case of existence – estimate the value of the right endpoint
of the deaths curve’s support on 16 overlapping nine-year moving windows for two different
estimators. On a significance level of 5% we obtain the existence of a finite limit to the maximum
possible lifespan of US females for each time window. The estimates for this limit are always
greater than 120 years and the corresponding confidence intervals range between 117 and 131.
A trend in the evolution of these estimates cannot be observed. The figures obtained are
considerably higher than those we obtain by an exclusive analysis of the HMD data and thus
also more far away from the censoring age of the HMD. This underlines that the construction of
the CDS significantly improves our results. Furthermore, in the paper we discuss the obtained
results with respect to other results from the literature though the direct comparison of the
results is difficult as different methods and/or different sources of data are used. It turns out
that our results are consistent to other results from literature.

To summarize, in this paper we describe a method to estimate the limit to human lifespan
for a particular population which includes the assessment of its existence in the presence of
sparse and censored mortality data; this method does not need any predefined assumptions of
mortality models and is strictly based on the information given by the mortality data. Hence
this paper answers the third part of the research questions.

11
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Research Paper 4: The Future of Mortality: Mortality Forecasting by
Extrapolation of Deaths Curve Evolution Patterns

In the fourth and final paper in this thesis we examine how the findings on the past evolution
of the deaths curve can be transferred to make forecasts on future mortality. To this end we
develop a new best estimate mortality model which is based on an extrapolation of the four
statistics of the classification framework we presented in the first paper. We introduce the model
theoretically, discuss questions on its practical implementation, and we demonstrate its benefits
with several example applications. This paper is joint work with Matthias Börger and Jochen
Ruß.

In scientific literature, various different mortality models are discussed. Many of these models
are not only used to describe realized mortality but also to make forecasts on future mortality.
However, the parameters of most of these models lack a clear demographic interpretation. Thus
extrapolating these parameters to the future might lead to forecasts which are not plausible in
a demographic sense. In the paper we provide an example for this claim: Using the mortality
models by Lee and Carter (1992) and Cairns et al. (2006) we forecast deaths curves until the
year 2070. We estimate the four statistics M , UB, DoI, and d(M) on the observed deaths
curves, where we calibrated the mortality models, as well as on the forecast deaths curves we
obtained from these mortality models. In this example there are considerable trend changes
or even jumps in the time series of three of these statistics right at the transition from the
calibration to the forecasting period. This implies that the forecasts of deaths curves with these
two well-established mortality models are not plausible from a demographic perspective in the
sense that the forecasts for the immediate future are not consistent with the development in the
immediate past. Also demographers make forecasts on future mortality based on their particular
expertise. They, however, often focus on single aspects of the complete mortality curve and
typically do not give a comprehensive picture of future mortality. This, in turn, is a feature of
mortality models. We have developed a mortality model which closes this gap.

This new mortality model builds on the deaths curve, which can be seen as the density function
of the distribution of lifetimes. Starting at the space of all density functions on the support of
the deaths curve, we define requirements on the shape of the deaths curve to find a subset of
this space with reasonably shaped deaths curves. In a second step we further restrict this set
and we select all deaths curves which fit a prediction of the four statistics M , UB, DoI, and
d(M). This leads to a subset of the set of reasonably shaped deaths curves. If this final set is
not empty, all deaths curves therein are regarded to be valid forecasts of our mortality model.
In the paper we discuss some criteria which can be used to select a particular deaths curve as a
unique forecast of the future deaths curve. If the set of deaths curves fitting the predictions of
the statistics is empty, either the shape requirements are too restrictive or the predictions of the

12
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statistics are not plausible.

Furthermore, we describe how we implement this model. To this end, we choose a deaths curve
representation with B-Splines and describe an algorithm which yields a deaths curve forecast of
our model. This algorithm starts at a given deaths curve – for example in the last year where
the deaths curve can be observed – and alters the components of the B-Spline representation
(i.e. the position and the weights of the splines) such that a reasonably shaped deaths curve is
obtained which fits the forecasts of the four statistics.

Finally, we apply the mortality model to mortality data for Swiss females on the age range
starting at age 60. We determine the most recent mortality scenario, which in this example, is
the vector (right-shifting mortality, extension, compression, concentration) and we determine
future deaths curves for different mortality scenarios: To illustrate that the mortality model
produces demographically reasonable forecasts, we first extrapolate the most recent trends in
the four aforementioned statistics from 2014 to 2070 (which we call the “base scenario”) and
determine respective deaths curves for each future calendar year. We analyze if these forecasts
reasonably extrapolate the observed deaths curve’s changes, the changes to the probability
of death, and other demographic statistics such as, for example, the remaining period life
expectancy. The results show that the recently observed trends are smoothly continued until
2070 by this model. Furthermore, we analyze four so-called “pure scenarios” in which only one
of the four components continues the trend of the base scenario while the others remain constant.
It becomes apparent that in our example only the pure right-shifting mortality scenario can
be extrapolated until 2070 with reasonable shape, while this is not true for the other pure
scenarios. This again underlines that pure scenarios can be observed for a certain time period,
but in the long term only mixed scenarios can prevail. We analyze the remaining period life
expectancy, which increases in the base scenario, for each pure scenario and find that the process
of right-shifting mortality has a stronger impact on the increase of this statistic than all other
components. To illustrate the flexibility of the model with respect to any expert’s assessment on
future mortality scenarios we also forecast deaths curves for a “stress scenario” where the trend
of right-shifting mortality and extension is intensified. For this example we compare the cohort
life expectancy of the base scenario and the stress scenario. Our comparison shows that the
cohort life expectancy is more than 5% higher in the stress scenario than in the base scenario.

Such analyses may be interesting, for example, for annuity providers to test their assumptions
on future mortality for sensitivity to future changes of the deaths curve. This is facilitated
by the model building on statistics with a clear demographic interpretation. Moreover, as the
structure of this mortality model and its forecasting approach are fundamentally different from
other mortality models it is a valuable addition to the toolkit of mortality projection models.

In summary, in this paper we develop a mortality model which is based on the extrapolation
of four statistics with a clear demographic interpretation and thus forecasts deaths curves

13
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which are consistent with recently observed demographic trends; also expert opinions to future
demographic trends can easily be included. Hence this paper answers the fourth part of the
research questions.
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Extension, Compression, and Beyond

– A Unique Classification System for Mortality Evolution

Patterns
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Abstract

A variety of literature addresses the question of how the age distribution of deaths

changes over time as life expectancy increases. However, corresponding terms such as

extension, compression, or rectangularization are sometimes defined only vaguely, and

statistics used to detect certain scenarios can be misleading. The matter is further com-

plicated because mixed scenarios can prevail, and the considered age range can have an

impact on observed mortality patterns. In this article, we establish a unique classification

framework for realized mortality scenarios that allows for the detection of both pure and

mixed scenarios. Our framework determines whether changes of the death curve over

time show elements of extension or contraction; compression or decompression; left- or

right-shifting mortality; and concentration or diffusion. The framework not only can

test the presence of a particular scenario but also can assign a unique scenario to any

observed mortality evolution. Furthermore, it can detect different mortality scenarios for

different age ranges in the same population. We also present a methodology for the im-

plementation of our classification framework and apply it to mortality data for U.S. females.

Keywords: Mortality scenario classification, Rectangularization, Shifting mortality, Ex-

tension, Compression
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1 Introduction

Mortality evolutions – that is, realized changes in mortality rates – have been analyzed extensively

in the last decades. These analyses typically examine changes in the distribution of lifetimes and

hence go far beyond determining trends in the evolution of life expectancy. In this sense, changes

in aggregated statistics such as life expectancy are simply a consequence of the underlying

change of the age distribution of deaths.

A wide range of literature addresses the question of how realized mortality has changed over

time and how patterns of past developments – which we also call mortality scenarios – can

be described and classified. In this context, different terms have been created, for example

rectangularization, compression, extension, expansion, and shifting mortality. These terms

have been helpful in the analysis of historical mortality evolution patterns. Their definitions

are, however, mostly intuitive, which can lead to ambiguity. For instance, Fries (1980) defined

rectangularization as the convergence of the survival curve to a theoretical but not completely

reachable final state, where everybody dies at the same age. Many authors have adopted this

definition (see, e.g., Cheung et al., 2005; Kannisto, 2000; Manton and Tolley, 1991). However,

as we show in the following section, this definition can be misleading. Similarly intuitive but

difficult to verify from observed mortality patterns is the definition of compression in Debón et al.

(2011) as a ”state in which mortality from exogenous causes is eliminated and the remaining

variability in the age at death is caused by genetic factors.” Thus, a precise and feasible definition

for each mortality scenario is necessary to test its occurrence in practice.

Furthermore, different authors have defined certain scenarios in different ways. In contrast to

the aforementioned intuitive definition in Debón et al. (2011), many authors have used certain

statistics of the deaths curve – that is, the age distribution of deaths – to define compression.

According to Kannisto (2001), (old-age) compression can be observed if the modal age at death

M (i.e., the age with the largest number of deaths) increases and SD(M+) (i.e., the standard

deviation of the distribution of deaths above M) simultaneously decreases. Other authors

have (at least implicitly) applied this definition (e.g., Cheung and Robine, 2007; Ouellette and

Bourbeau, 2011). Wilmoth and Horiuchi (1999), on the other hand, identified compression by

a shrinking interquartile range (IQR) – that is, the length of the age range between the 25th

and the 75th percentile of the distribution of deaths. Analogously, Kannisto (2000) used the so

called Cα-statistics – the shortest age range in which α% of all deaths occur. Thatcher et al.

(2010) observed compression if the slope parameter in a logistic mortality model increased with

time. We show in the following section that different definitions of compression do not always

yield the same results.

Scenario definitions can also be critical when they rely on observations for a rather small age

range only. For instance, when analyzing the evolutions of M and SD(M+), one completely

ignores the mortality evolution for all ages less than M . As we show in the following section, if

M increases and SD(M+) decreases, compression need not be present for the whole age range
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under consideration.

The distinction between different scenarios is also not always clear. For instance, Wilmoth

(2000) stated that rectangularization should be ”best thought of as ’compression of mortality’.”

For Myers and Manton (1984), compression and rectangularization also seem to be the same

scenario. Others, like Nusselder and Mackenbach (1996), see rectangularization as a special

case of compression in which the life expectancy increases with time. A similar issue exists for

definitions of extension, expansion, and shifting mortality. For example, Debón et al. (2011)

used the terms expansion and shifting mortality but did not explain the differences between

them. Others have defined the three terms differently. For example, Wilmoth and Horiuchi

(1999) used the term expansion if the force of mortality decreased faster for older ages than for

younger ages. Bongaarts (2005), on the other hand, explained the scenario of shifting mortality

as a result of ”delays in the timing of deaths”; that is, the force of mortality curve exhibits

simply a shift in age. Cheung et al. (2005) used the term longevity extension for a scenario in

which longevity beyond the modal age at death increases.

Sometimes, one scenario is defined by the absence of some other scenario. For instance, Canudas-

Romo (2008) regarded shifting mortality as a scenario in which ”the compression of mortality has

stopped.” Obviously, such a definition implies that these scenarios – namely, shifting mortality

and compression – are mutually exclusive, which rules out mixed scenarios by definition. As

we show later, elements of different mortality scenarios can often be present at the same

time. Therefore, analyses that focus solely on testing for one particular scenario – for example,

compression – can never provide a comprehensive insight into the mortality evolution.

In this article, we address these issues and establish a unique classification framework for

mortality scenarios. The framework is based on observed changes in the deaths curve for the age

range under consideration. We build on existing concepts such as shifting mortality, extension,

and compression, and then combine these concepts into a framework that particularly allows for

the detection of mixed scenarios of mortality change. We provide precise definitions of scenarios

and show how they can be identified.

Furthermore, our framework is applicable to any age range from some starting age to the age

at which everybody has died. Thus, the age range can be chosen such that it best suits the

question at hand. We show that different scenarios might prevail for different age ranges and

that our framework can identify this. For instance, sometimes scenarios can be observed in

which more and more deaths are shifted from younger to older ages but deaths become more

and more evenly spread at the older ages. Such a scenario might be thought of as compression

on the age range starting at 0 but quite the opposite on the age range starting at 60 (see the

following section). We also provide a possible methodology for implementing our framework

and show its practical applicability in an example.
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2 Typical Issues with Scenario Definitions and Statistics

In this section, we identify and discuss some shortcomings of existing approaches for the

classification of mortality scenarios. These shortcomings motivate a need for a new classification

framework, as developed in the following section.

2.1 Imprecise Mortality Scenario Definitions

Mortality scenarios describe patterns in the evolution of mortality over time, this is a process

of change. However, in the literature, we find several imprecise mortality scenario definitions.

One example is the attempt to define the process of change solely by some (only theoretical and

hence unreachable) final stage. This is the case when rectangularization is defined as a process

in which the survival curve approaches a rectangular form. However, a rectangular form can be

reached via different routes.

This is illustrated by the left panel of Fig. 1, which shows a hypothetical albeit not unrealistic

evolution of deaths curves d(x) over time.1 Assume that at some point in time, mortality in a

population follows the curve labeled State 1. At some later point, it follows State 2 and so on

until it reaches State 5. Without using any formal definition, one would intuitively conclude

that some scenario of compression takes place between States 3 and 5. Between States 1 and 3,

however, a scenario that is somewhat the opposite of compression can be observed.

Figure 1: Mortality evolution in a hypothetical example. Left: deaths curves; right: survival
curves

If, however, one looks at the corresponding survival curves l(x) (right panel of Fig. 1), one

might intuitively conclude that with every step, the shape becomes more rectangular. Therefore,

1All deaths curves in this article are scaled such that the areas underneath the curves each integrate to 1.
Thus, the corresponding survival curves start with a radix of 1. Also note that all examples in the second and
third section of this article are based on hypothetical illustrative curves that are, however, reasonable given that
overall mortality improves and life expectancy increases.
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one might identify the whole transition from State 1 to State 5 as rectangularization, which is

sometimes seen as a special case of compression. This clearly contradicts the observation that

between States 1 and 3, the opposite of compression prevails.

Thus, the definition of a mortality scenario by some theoretical final state that is being approached

will not always lead to a correct result.

2.2 Misleading or Insufficient Statistics

Of course, a reduction of complexity by looking at some key statistics of deaths or survival curves

rather than at the whole curves is desirable. On the other hand, this approach always leads to a

loss of information. Therefore, one should very carefully identify statistics that preserve the

part of the information that is of interest. Unfortunately, for some statistics that are frequently

being used to describe patterns of mortality changes, this is not the case (at least if they are

not analyzed together with additional statistics). In this subsection, we will explain this point.

Returning to Fig. 1, observe that the modal age at death M increases from state to state

starting with 83 years in State 1 and reaching 104 years in State 5. At the same time, SD(M+)

decreases from state to state starting at 7.62 in State 1 and ending at 2.71 in State 5. Following,

for example, Robine et al. (2008), this would mean that compression prevails throughout the

process and, in particular, also between States 1 and 3, which is inconsistent with the intuition

from looking at the left panel of Fig. 1.

Sometimes, different statistics designed to measure the same thing can lead to contradicting

results. For example, compression is often defined by a reduction of the IQR and/or a Cα-

statistic (see Kannisto, 2000; Wilmoth and Horiuchi, 1999). Figure 2 shows two scenarios of

mortality evolution in which the structures of the mortality distributions changed considerably

from State 1 to State 2, with clear characteristics of mortality improvement and compression.

However, IQR remains unchanged in the left panel of the figure, whereas C50 remains at the

same value in the right panel. Thus, neither IQR nor C50 alone is always able to identify

compression.

Such issues can always occur when changes of the entire deaths curve are identified using

statistics that take into account only parts or certain points of the deaths curve.

2.3 Ignoring Mixed Scenarios

Next, we show that it may not be appropriate to define a certain mortality scenario as the

opposite of some other scenario or, more generally, that mixed scenarios should be allowed for.

Hence, more than one dimension is required to get a full picture of a mortality scenario.

A classical example is the relationship between shifting mortality2 (or extension) and compression.

2As noted in the Introduction, the terms expansion, extension, and shifting mortality coexist in the literature.
We consider expansion and extension to be the same, and use the term extension for that. We consider shifting
mortality to be a different phenomenon, as explained in the next section.
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Figure 2: Mortality evolutions with compression. Left: unchanged IQR; right: unchanged C50

The left panel of Fig. 3 shows a mixed scenario in which (in the transition from State 1 to

State 2) shifting mortality and compression seem to coexist. Therefore, identification of one

scenario should not rule out the other. Analogously, in the right panel of Fig. 3, neither shifting

mortality nor compression can be observed. Thus, rejection of one scenario does not imply

that the other scenario prevails. Thus, clearly it is not suitable to consider compression and

shifting mortality as disjoint categories. This again shows the need for a more sophisticated

classification system that combines different concepts of compression, shifting mortality, and so

forth in the form of mixed scenarios.

Figure 3: Two hypothetical examples. Left: shifting mortality and compression coexist; right:
neither shifting mortality nor compression exists
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2.4 Effect of Age Range

Different types of mortality evolution can occur in different age ranges. Myers and Manton

(1984) compared the survival curve starting at age 0 with the survival curve starting at age 65

for U.S. females and males between 1962 and 1979. They observed a clear tendency toward

rectangularization for the entire age range but not at the older ages. If one is interested

primarily in a certain age range (e.g., old-age mortality), one should therefore consider only the

corresponding part of the mortality curve.

However, when restricting the age range, undesired effects may occur whenever statistics are

being used that depend on the number of people being alive at the beginning of the considered

age range: for example, d(M), the number of deaths at age M . Assume that one is interested in

the age range starting at age 65. If between two points in time, younger-age mortality decreased,

then more people would reach age 65. Even if older-age mortality did not change at all, d(M)

would increase (with M remaining unchanged), suggesting a change in old-age mortality. And if

a change in old-age mortality actually occurred, the change in d(M) would be affected by both

the change in old-age mortality of interest and a change in younger-age mortality not of interest.

These undesired effects can be eliminated by normalizing the population sizes such that at all

considered points in time, the number of people alive at the beginning of the considered age

range is the same (e.g., l(65) = 1).

The left panel of Fig. 4 shows some mortality evolution over the entire age range. Here, clearly

compression toward higher ages can be observed. If one is interested only in the age range 65+,

one might intuitively look at the respective age range of the left panel of Fig. 4 (i.e., without

normalizing), which displays signs of compression. However, in the normalized curves (right

panel of Fig. 4), the deaths curve of State 2 looks less dense than for State 1, which is an

indication against compression.

3 A New Classification Framework for Mortality Scenar-

ios

In the previous section, we identified shortcomings of existing approaches for the classification

of mortality evolutions. We now propose a new framework in which unique mortality scenarios

are defined based on observable changes in the shape of the deaths curve. In this section,

we introduce the intellectual concept of the framework. In the next section, we describe a

methodology that can be applied to estimate the statistics used in our framework and to identify

trends and trend changes in these statistics.

Our framework combines and uniquely defines four concepts for the change of mortality over

time that are well known from the literature: (1) shifting mortality (see, e.g., Canudas-Romo,

2008), (2) longevity extension (see, e.g., Rossi et al., 2013), (3) compression of mortality (see,
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Figure 4: Mortality evolution with increasing number of survivors to age 65. Left: complete age
range; right: starting at age 65 with normalized l(65)

e.g., Myers and Manton, 1984), and (4) concentration of mortality (see, e.g., Kannisto, 2001).

As we will show, only a combined look at all four dimensions – which automatically allows us

to consider both pure and mixed scenarios – gives a full picture of the considered mortality

evolutions.

Our classification framework can be applied for any age range that includes the right tail of

the deaths curve. Depending on the question at hand, the age range could start, for example,

at 0, some juvenile age, or retirement age. In particular, it is possible that the classification

framework identifies different mortality scenarios for different age ranges (see the upcoming

section on the application of our classification framework for an example).

For any given age range, we use four key characteristics of the deaths curve, each corresponding

to one of the aforementioned concepts. Significant changes in one or several characteristics

over time mean that the deaths curve has changed. Conversely, if these four characteristics

remain unaltered, changes in a deaths curve are regarded as immaterial. We will show that

these four characteristics are sufficient to distinguish between a great variety of deaths curves

and to uniquely classify mortality scenarios. The four characteristics are as follows:

1. The position of a deaths curve’s peak is measured by the modal age at death M and

describes general shifts in the distribution of deaths. Because the shape of a deaths

curve typically changes over time, a pure shift of the entire deaths curve will rarely occur,

and therefore we consider its center M as a reference point. An increase in M indicates

right-shifting mortality, and a decrease in M implies left-shifting mortality. In this section,

we assume that the modal age at death can be determined uniquely.3

3The peak might not be unique in only rather theoretical scenarios – for example, because of multiple peaks of
the same height or a plateau. In such a case, one might use a suitable alternative to M or modify the framework
to include additional statistics.
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2. The support of a deaths curve is determined by its upper bound, which we refer to as

UB.4 We denote the respective changes of UB as extension (if UB increases over time)

and contraction (if UB decreases over time). Estimating UB in practice involves some

ambiguity; see the following section for more details.

3. The degree of inequality in the distribution of deaths, which we denote by DoI, is the

least obvious of the four key characteristics. However, Fig. 5 shows two deaths curves that

are significantly different, although the other three statistics of our framework coincide.

Therefore, an additional statistic related to the shape of the curve is required. The

deaths curve of State 2 is almost 0 up to age 50, while State 1 shows a somewhat more

balanced distribution of deaths over all ages. DoI is designed to pick up such differences

by measuring the equality/inequality of the distribution of deaths over the whole age range.

Intuitively, a low value of DoI indicates that deaths are rather equally distributed over the

whole age range considered and vice versa. We use the terms compression/decompression

if DoI increases/decreases; see the following section for more details.

Figure 5: Mortality evolution with constant M , d(M), and UB, but changing DoI

4. The height of the peak of a deaths curve is given by d(M). This component addresses the

evolution of a deaths curve at and close to its center, M . An increase in d(M) is referred to

4In theory, UB can exist only if the probability of death reaches 1 for some age. If the probability of death
remains below 1 for all ages, any age could be reached in principle. Research by several authors (see, e.g., Gampe,
2010) has indicated that probabilities of death typically flatten out at very old ages, possibly somewhere near
0.5. Thus, the population surviving up to such ages would get halved every year; but if the initial population
was large enough, there would be a few survivors up to any age. Therefore, one could argue that UB does not
exist in theory, which is, however, irrelevant for our application.
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as concentration and indicates that the distribution of deaths becomes more concentrated

around M . The counterpart to concentration is what we refer to as diffusion, and it is

observed if d(M) decreases. Similar to DoI, d(M) can also be seen as an indicator for the

equality/inequality of the distribution of deaths. A large d(M) implies that many deaths

are concentrated at and around M . However, d(M) is a more local measure for a small

region around M , whereas DoI measures the equality/inequality of the distribution of

deaths over the whole age range.

Of course, each of the four components can remain unchanged over time. In this case, the

respective component is referred to as neutral. Thus, every component can attain three states.5

Two of the four aforementioned statistics (UB and M) primarily determine the position of the

deaths curve, and the other two (d(M) and DoI) primarily describe its shape. We believe that

these four characteristics provide a good trade-off between granularity and complexity. The

four components are summarized in Table 1.

In principle, any combination of the three states for each component is possible, impliying that

we can classify both pure and mixed scenarios, which was one of the requirements we outlined

earlier. In a pure scenario, only one component of the scenario vector is different from neutral.

For instance, the vector (neutral, extension, neutral, neutral) denotes a pure extension scenario.

On the other hand, a vector such as (neutral, extension, compression, neutral) describes a

mixed scenario, which contains elements of both extension and compression. In total, 34 = 81

mortality scenarios are possible, which might seem unfeasible at first glance. However, many

scenarios will hardly be observed in practice – for example, (left-shifting mortality, extension,

compression, diffusion). Those scenarios are nevertheless part of our classification framework to

make sure that there are no unclassifiable evolutions and that classifications are unique.

4 Methodology for the Implementation of the Classifica-

tion Framework

The application of the classification framework introduced in the preceding section involves two

main steps. First, the four statistics need to be estimated from deaths curves for each year

in the observation period. A reasonable estimator for each of the statistics is proposed in the

following subsection. Thereafter, trends in the resulting time series need to be analyzed to

determine the prevailing states in each of the four scenario components, as we address in a later

subsection. Obviously, various different estimators and methods could be used in both steps,

and thus the specific estimators and methods described in this section are only one possible

implementation.

5If a distinction between different intensities of increase or decrease is desired, more than three states can be
considered or additional information about the slope of the respective trend line (see the section on methodology)
can be added.

1 Extension, Compression, and Beyond—Classifying Mortality Patterns Research Papers

32



Scenario Criterion (in terms of deaths curve characteristic

Component Attainable States and statistic to be computed)

1 Right-shifting mortality Peak shifts to the right; M increases

Left-shifting mortality Peak shifts to the left; M decreases

Neutral Peak does not move; M constant

2 Extension Support is prolonged; UB increases

Contraction Support shrinks; UB decreases

Neutral Support remains unchanged; UB constant

3 Compression Distribution of deaths less balanced; DoI increases

Decompression Distribution of deaths more balanced; DoI decreases

Neutral Distribution of deaths equally balanced, DoI constant

4 Concentration More deaths at/around M ; d(M) increases

Diffusion Less deaths at/around M ; d(M) decreases

Neutral Number of deaths at/around M unchanged; d(M) constant

Table 1: Scenario components, attainable states, and criteria

4.1 Estimation of Statistics

We now explain how we calculate the four statistics from the deaths curve in any given year.

Both, raw or smoothed deaths curves can be used in principle. In our application later in the

article, we explain why we prefer using smoothed data.

For the position of a deaths curve’s peak measured by M , we use the following estimator by

Kannisto (2001):

M = xd max +
d(xd max)− d(xd max − 1)

(d(xd max)− d(xd max − 1)) + (d(xd max)− d(xd max + 1))
, (1)

where xd max is the age for which the largest number of deaths is observed. As a byproduct, the

height of a deaths curve’s peak (d(M)), can then be estimated by the number of deaths at age

xd max:

d(M) = d(xd max). (2)

For the upper bound of a deaths curve’s support (UB), we use the age at the α percentile of the

distribution of deaths, xα, plus an estimate for the remaining life expectancy at that age. Thus,

the estimator for UB is

UB = xα + exα . (3)

This approach builds on Rossi et al. (2013), who proposed using the 90th percentile of the

distribution of deaths as an approximation for the highest attainable ages. We prefer our

combined estimator because it is considerably less biased. In our application, we set α = 99%.

For the populations we analyzed, this choice provides a reasonable compromise between cutting
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off only a small part of the distribution of deaths and stability in the statistic’s evolution over

time. For smaller (sub)populations, however, smaller values for α might be more appropriate.

The statistic measuring the degree of inequality (DoI) in the distribution of deaths needs to take

into account the whole age range. Therefore, statistics such as SD(M+), IQR, or Cα – which,

as explained earlier, are commonly used to measure compression – are not feasible. An intuitive

alternative is the area between the actual deaths curve and a hypothetical flat deaths curve

dflat(x) as illustrated in Fig. 6. Using discrete data, this area can be approximated by summing

the absolute differences in the numbers of deaths between the two deaths curves. Thus, we

estimate DoI as

DoI = c ·
bUBc∑

x=x0

|d(x)− dflat(x)| = c ·
bUBc∑

x=x0

∣∣∣∣d(x)− lx0
(UB − x0 + 1)

∣∣∣∣ , (4)

where x0 is the starting age of the deaths curve, and c = bUBc−x0+1
2·lx0 (bUBc−x0)

is a scaling factor such

that DoI assumes its maximum value of 1 if all people die at the same age. The minimum value

of DoI is 0 if deaths are uniformly distributed over all ages – that is, if d(x) = dflat(x) holds for

all x.

Figure 6: DoI as the area between observed deaths curve d(x) and hypothetical flat deaths
curve dflat(x)

Note that the dependence of DoI on UB is uncritical in our framework given that we are

interested only in changes of DoI over time. A potential misestimation/bias of UB would

affect DoI in the same way for each point in time. Further, changes in UB over time do not

automatically imply changes in DoI. For instance, if UB increases while the deaths curve’s
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shape does not change materially, the slight changes of d(x), dflat(x), and the scaling factor c

would basically cancel each other.

As mentioned earlier, alternative estimators could be used for the four statistics. In particular, an

extensive literature explores measuring UB, which is sometimes referred to as maximum lifespan

(see, e.g., Finch and Pike, 1996) or finite lifespan (see Fries, 1980). Alternative estimators for

UB can be found in, for example, Cheung and Robine (2007), Fries (1980), and Wilmoth (1997).

As alternative measures for DoI, one could consider the variance in the number of deaths, the

Gini index, as proposed by Debón et al. (2011); or entropy, as originally proposed by Demetrius

(1974) and adopted by Keyfitz (1985) and Wilmoth and Horiuchi (1999). These statistics also

consider the whole age range as required. However, the Gini index and entropy are defined on

the survival curve, which makes them less intuitive in our deaths curve-based framework.

4.2 Determination of Prevailing States

After the four statistics are estimated for each year in the observation period (see an example

of the resulting time series in Fig. 7), the trends prevailing at each point in time need to be

determined. We now introduce a possible methodology that we found to be suitable for all data

sets we analyzed. However, a different methodology or modifications of our methodology – for

example, with respect to the significance levels in the different tests – could be used and might

be advisable for certain applications.

Elimination of Outliers

Potential outliers should be eliminated because they are irrelevant with respect to long-term

trends and can significantly blur the trend analysis. Such outliers are typically caused by

extreme events, such as the Spanish flu pandemic. To detect whether a data point is an outlier,

we fit a linear regression to the 10 adjacent data points. The sample variance of the residuals

(assumed to be normally distributed) can then be used to derive a 99 % prediction interval for

the data point under consideration. If the data point lies outside the prediction interval, it is

considered an outlier.

Determination of Trends, Trend Changes, and Jumps

To determine trends in the four statistics, we fit piecewise linear trends to the respective time

series. Most of the time, mortality evolves rather steadily over time, and hence the piecewise

linear trends should connect continuously. However, jumps can occur in case of extreme changes

– such as the fall of the Soviet Union or a world war – or changes in data processing methods.

Thus, at every data point of a time series under consideration, the previous linear trend can

persist, a new trend can commence starting at the end point of the previous trend (change in

slope), or a new trend can commence at some other level (jump and change in slope). The
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Figure 7: Development of the four components of our classification framework for U.S. females
from 1947 to 2013. Upper-left panel: M ; upper-right panel: UB; lower-left panel: DoI;
lower-right panel: d(M)

following methodology first determines which of the three possibilities is the most likely for

each data point and then analyzes how many changes in slope and jumps are most suitable to

describe the structural patterns in the entire time series and where they should occur.

To identify candidate data points for trend changes – that is, changes in slope with or without

jumps – we first perform a preliminary analysis. We carry out three fits for every possible

combination of three data points:6 (1) a straight regression line to the data from the first to

the third data point, (2) a continuous regression line to the data from the first to the third

6If the time series has k data points, we consider all k × (k − 1)× (k − 2)/6 possible triples.
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data point with a change in slope at the second data point, and (3) two straight regression

lines (to the data from the first to the second and from the second to the third data point,

respectively) that allow for a jump at the second data point. A set of Chow tests (see Chow,

1960) is used to determine which trend evolution is most likely for the second data point, under

the assumption that adjacent trend changes are located at the first and third data point or that

these data points are the first or last data points of the entire time series. In the first Chow test

(significance level of 1%), the null hypothesis of one persistent trend – that is, no change at the

second data point – is tested against a continuous change in slope. The result of the test (the

new null hypothesis) is then tested against a jump in a second Chow test. The results of the

Chow tests usually depend on the choice for the first and third data points. Thus, whether a

data point is a candidate for a trend change (and if so, of which kind) depends on the position

of the neighboring trend changes.

After the preliminary analysis, we use the following main algorithm to identify the number and

locations of trend changes that result in an optimal fit:7

• Step 1: We commence by fitting a straight regression line to the entire time series. This is

the case of no trend change (i.e., the number of possible trend changes n is 0).

• Step 2: The number of possible trend changes is increased from n to n+ 1.

• Step 3: We determine the sample variances of the residuals from the fit with n trend

changes. They will be required as variance estimators in Step 5. The sample variances are

to be computed separately for each period with constant trend. We use a regime-switch

argument here to justify that the variance can change when the trend changes and thereby

allow for heteroscedasticity as can be observed in Fig. 7, for example.

• Step 4: Building on the preliminary analysis, we determine all feasible combinations of

n + 1 candidate data points for trend changes. The preliminary analysis also indicates

for each candidate data point whether the trend change would be a change in slope with

or without jumps. If there is no feasible combination, the fit with n trend changes is the

overall optimal fit, and the algorithm terminates.

• Step 5: For each feasible combination of trend changes from Step 4, we fit a piecewise

linear trend curve to the data (and allow for discontinuities only when the type of the

potential trend change is a change with jump). To account for heteroscedasticity, we use

the sample variances from Step 3 as weights.

• Step 6: The optimal trend change positions (and thus also the trend change types) for

n + 1 trend changes are determined by comparing the fits from Step 5 by the Akaike

information criterion (AIC) (Akaike, 1973). The number of parameters is two (initial

7The presentation of the algorithm aims for a clear presentation of and distinction between the steps involved
and does not pay attention to computing efficiency.
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intercept and slope) plus n+ 1 for the trend change positions plus n+ 1 for the changes

in slope plus one for every jump (i.e., the new intercepts after the jumps).

• Step 7: Finally, we compare the optimal fits with n and with n+ 1 trend changes to assess

the contribution of the additional trend change to the time series representation. To this

end, we use another Chow test (again with significance level 1%). Because the original

test by Chow considers only one trend change versus none, we use an extended version of

the test. The test statistic remains unchanged, but the number of parameters increases

(one for each trend change position, each intercept, and each slope). Note that for n ≥ 2,

we can also account for heteroscedasticity in this test by applying variance estimates from

the optimal fit with n− 1 trend changes as weights. The null hypothesis in the Chow test

is the case of n trend changes. Thus, the additional trend change is accepted only if it

significantly improves the fit, which is in line with our intention of determining long-term

trends. If the null hypothesis stands, the time series can be adequately described by n

trend changes, and the algorithm terminates. If the additional trend change significantly

improves the fit, we return to Step 2.

Testing for Increasing, Decreasing, or Neutral Statistics

Finally, we have to determine whether the resulting trend curve (see the lines in Fig. 7) should

be considered increasing, decreasing, or neutral in the context of our framework. For each period

with constant trend, we use an F test with a significance level of 10% to analyze whether the

slope of the trend is significantly different from 0. If the slope is not significantly different from

0, the state neutral is assigned. Otherwise, we consider the statistic as increasing (decreasing) if

the slope is positive (negative) during the corresponding period. This definition implies that

the state neutral is assigned not only if the slope is clearly close to 0 but also if the uncertainty

in the underlying data is too large to identify a significant trend.

5 Application of the Classification Framework

In this section, we apply our classification framework to the mortality evolution of females in the

United States.8 We derive log mortality rates ln(m(x, t)) for ages 0 to 109 from the deaths and

exposure data in the Human Mortality Database (HMD, 2015) for years 1933–2013. For each

calendar year, these log mortality rates are then smoothed and extrapolated using P splines,

allowing us to derive normalized and smoothed deaths curves. We prefer this approach over

using the raw deaths curves from the HMD for several reasons: (1) potential disturbing effects

8We also applied the framework to several other populations, such as Sweden, Japan, and West Germany.
In all cases, the framework yielded reasonable and informative results. For the sake of brevity, however, we
show the results for only one population. We chose U.S. females for illustration because the variety of different
observed scenarios was the largest. See Genz (2017) for an application of our framework to a larger number of
countries and a comparison of the respective mortality patterns.

1 Extension, Compression, and Beyond—Classifying Mortality Patterns Research Papers

38



resulting from birth cohorts of different sizes are eliminated; (2) random effects in the data,

which might lead to double peaks in the deaths curve, are significantly reduced; (3) the potential

effect of age misspecifications in the raw data, particularly with respect to estimating UB, is

reduced; and (4) the time series for the four statistics exhibit fewer random fluctuations and are

thus easier to analyze.

We consider deaths curves covering different age ranges as discussed earlier. The curves d10(x, t)

start with a fixed radix at age 10 and thus exclude effects from infant mortality, whereas the

d60(x, t) curves allow for an analysis of mortality at typical retirement ages. Figure 7 displays the

four components of our classification framework for both starting ages along with the respective

piecewise linear trend lines.9

By definition, the curves for the modal age at death M coincide for both starting ages. From

a theoretical perspective, the same holds for UB. However, the chosen estimator yields slight

differences for the different starting ages. Because the two sets of data points would be difficult

to distinguish, and the resulting scenarios for this component are the same for both starting

ages, we display UB only for starting age 10.

From Fig. 7, we note that our framework identifies several trend changes for each of the statistics

and both starting ages. Such trend changes can mean that (1) the direction of the trend changes

(e.g., from increasing to neutral or decreasing), or (2) only the intensity of the trend (i.e.,

the slope of the trend line) changes significantly while its direction remains unchanged. For

example, the first two trend changes in M are changes in the direction of the trend, whereas

the subsequent trend changes (except the last one) concern only the intensity of the increase

(i.e., the pace of the right shift in mortality). Thus, a trend change does not inevitably lead

to a change in the scenario vector. Moreover, as mentioned earlier, trends can change with or

without a jump in the absolute level of the statistic. In our example, such jumps occur for all

statistics except d(M)60.

The direction of each trend as well as the position of the trend changes and their types – that is,

a change in slope with or without an upward/downward jump – are summarized in Fig. 8. This

representation allows for an easy visual assessment of the scenario vector at each point in time.

For instance, in the year 2010, for both starting ages, the scenario vector is (0, +, +, -): that is,

the scenario is neutral with respect to shifting mortality and exhibits extension, compression,

and diffusion at the same time.

By comparing Fig. 7 with Fig. 8, we find some periods with seemingly increasing (decreasing)

trends in Fig. 7 but a classification as neutral in Fig. 8. One such example is the first trend for

UB. Here, the underlying data has a relatively strong variance, and therefore the seemingly

increasing trend is not significant, as explained earlier.

The results of our analysis particularly underline the need for combining different concepts of

9We also considered the starting ages 0 (i.e., the complete age range) and 30 in order to exclude effects of
young adult’s mortality, such as accidents. The observed scenarios for starting ages 0, 10, and 30 are quite
similar.
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Figure 8: Time bars of mortality evolution for U.S. females, each statistic, and both starting
ages

mortality change in one framework given that we observe mixed scenarios over almost the whole

observation period. There are even periods in which all four indicators change – for example,

between 1973 and 1982 for starting age 10. During this period, we simultaneously observe

right-shifting mortality and extension (i.e., both the mode and the upper bound of the deaths

curve move to the right) combined with a compression of the whole curve and an increase of

the concentration around the mode. In contrast, pure scenarios seem to be very rare: only for

starting age 60 and years 1941 to 1948 do we find a scenario of pure diffusion.

Furthermore, the results show that each of our four components is relevant in the sense that

no component can be explained by the others. For instance, as one would expect, M and UB

increase over the observation period in general: we observe right-shifting mortality and extension.

However, particularly for UB, we observe the opposite trend (i.e., contraction) for some periods

(e.g., the 1990s), and thus these two statistics do not move in the same direction throughout

the entire observation period. This also holds for DoI and d(M), although they also frequently

follow the same trend. For example, after 2006, d(M) decreases for both starting ages, while

DoI increases for both starting ages: we observe diffusion and compression at the same time.

The results also highlight the importance of choosing a suitable age range. For both DoI and

d(M), we find several periods in which the trends differ by starting age. For instance, between

1975 and 1990, we observe compression for starting age 10 but decompression for starting age

60.

6 Conclusion

In this article, we explain why many existing approaches to classify patterns of mortality

evolution have four major shortcomings: (1) mortality scenario definitions are often imprecise

and intuitive rather than rigorous; (2) some frequently used statistics are not always sufficient

to identify the respective scenarios; (3) mixed scenarios are usually not accounted for; and (4)

the effect of the considered age range is often ignored.

We propose a new framework for classifying patterns of mortality evolution. Our approach

is based on changes of the deaths curve and uses four statistics that should be considered
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simultaneously. Each mortality scenario then consists of four components: (1) the deaths

curve can exhibit a right-shift or a left-shift or be neutral in that respect; (2) the deaths curve

can exhibit extension or contraction or be neutral in that respect; (3) the deaths curve can

exhibit compression or decompression or be neutral in that respect; or (4) the deaths curve

can exhibit concentration or diffusion or be neutral in that respect. This approach overcomes

the shortcomings of previous approaches: each mortality evolution is uniquely and precisely

classified; by considering all four components simultaneously, mixed scenarios are automatically

detected; and the framework is applicable to different age ranges.

For some of the statistics used, the estimation is not straightforward. Beyond an introduction

of the intellectual concept of the framework, we therefore also introduce a methodology that

can be used to estimate the statistics and determine trends and trend changes in the data. We

apply our approach to data for U.S. females, illustrating that the structure of the change in

mortality can be quickly assessed and well understood. We further demonstrate empirically

that none of the four components can be explained by the other three and that results can

significantly differ for different age ranges.

The purpose of our framework is a classification of realized mortality evolutions. In this sense,

it is purely descriptive: it does not provide explanations for observed trends and trend changes.

It seems obvious that any research that intends to provide such explanations or seeks to explore

a link between determinants of mortality and observed patterns of mortality change needs as a

prerequisite a common understanding of which pattern of mortality change has been observed in

which situation. Our methodology can provide this and hence serves as a basis for such research.

In particular, the detected trend changes can be an indication when and how demographic

changes have occurred. Similarly, by applying our framework to different populations, time and

structure of differences in their demographic evolutions can be detected, which again can serve

as a basis for research on the causes.

If a mortality model is to be calibrated to historical data, our framework can also be used to

identify suitable time spans (e.g., without major trend breaks). Further, the framework can be

applied for testing whether existing mortality projections are consistent with observed trends in

the most recent history.
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Abstract

A variety of literature deals with the question how the age distribution of deaths

develops over time, and many different notions have been established for certain scenarios.

In Börger et al. (2016), a classification framework has been developed that allows for a

unique classification of mortality evolution patterns. In particular, the framework assigns a

unique scenario to any possible mortality evolution. In contrast to many other classification

approaches, this approach allows for so-called mixed scenarios, such as a combination of

elements of compression and shifting mortality. Thus, it provides a more comprehensive

picture of historical and potential future mortality evolution patterns.

In the present paper, we briefly summarize this classification framework and discuss

issues in its practical application. Then we apply the framework to mortality data for

different countries all over the world. This yields a complete picture of historical mortality

evolution patterns in those countries and adds to existing analyses where only certain

aspects of mortality evolution patterns have been considered (e.g., a test for one scenario like

compression) for only one or a few countries. We then discuss similarities and differences

in the historical mortality evolution patterns between different populations. We also apply

the framework to different age ranges, since sometimes different scenarios can be observed

for different age ranges, even within one population.
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1 Introduction

The age-specific structure of mortality changes probably all over the world. For instance, life

expectancy has been increasing in most countries over the last decades. This, however, is only a

particular symptom of the underlying change of the deaths curve (i.e., the age distribution at

death). Thus, the question of how the structure of mortality changes in detail goes beyond the

change in life expectancy: What are the main drivers of this evolution? Which age ranges are

mostly affected by the change of the mortality structure? Moreover, potential dependencies and

differences between the evolution of the structure of mortality for different populations often

need to be analyzed in order to get an idea of supra-regional or even global trends in the deaths

curve’s evolution.

Many recent publications deal with the evolution of the mortality structure of single populations,

including Nusselder and Mackenbach (1996) for the Netherlands, Cheung et al. (2009) for

Switzerland, and Debón et al. (2011) for Spain. Of course, such an analysis usually is motivated

by the objective of the research, but the results may be strongly affected by country-specific

circumstances (e.g., the country’s social structure or health care system). Moreover, supra-

regional or even global trends in the deaths curve’s evolution cannot be detected, and it is not

possible to separate them from population-specific effects. That is why the analysis of mortality

structures should be set in a context of coherent populations. In contrast, some authors analyze

trends in mortality evolutions of different populations (e.g., Canudas-Romo, 2008; Edwards and

Tuljapurkar, 2005; Kannisto, 2000; Robine et al., 2008; Thatcher et al., 2010). However, often

such analyses are mere demonstrations of the framework presented in the particular articles, so

the focus is less on the comparison of the evolution of mortality structures between different

countries. Only a few authors focus on the comparison of the trends in mortality evolution,

but they typically restrict their analyses to specific aspects of the mortality structure. For

example, Ouellette and Bourbeau (2011) explore trends in the adult mortality structure of 10

different countries. They inspect the evolution of the two statistics, the modal age at death M

and the standard deviation above the modal age at death, which they call SD(M+). These

statistics were also suggested by, for example, Kannisto (2001). In a recent paper, Börger et al.

(2016) observed that these two statistics are often not sufficient, particularly if the focus is on

the change of the complete mortality structure, rather than on certain characteristics of its

evolution. Also, Edwards (2011) has an exclusive focus on a certain characteristic of the deaths

curve’s evolution – in particular on the inequality of the age distribution of deaths. To this

end, he analyzes the mortality data of 180 different populations. However, the inequality or

dispersion of the distribution is, of course, just one aspect in which the structure of mortality

can change. For instance, life expectancy might increase over time while the dispersion of the

age distribution of deaths stays constant or even decreases. Finally, Viner et al. (2011) use data

of 50 different populations, which are clustered in terms of amount of income. However, the

focus of this research was specifically on ”mortality trends in children and young people.”
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In summary, there is only little research on the differences in the development of the mortality

structure between different populations. Authors covering that topic mainly focus on specific

age ranges or particular characteristics of the mortality structure.

The present paper aims to fill this gap and provides a comparison of the past trends in the change

of the (full) deaths curve of 34 different populations. To this end, we use a unique classification

system for mortality evolution patterns that has been introduced by Börger et al. (2016). Based

on the deaths curve, it can be applied to different age ranges and makes use of four statistics:

The modal age at death M and the upper bound of the deaths curve’s support UB measure

changes in the position of a deaths curve over time, while the degree of inequality DoI and the

number of deaths at the modal age at death d(M) display changes in the deaths curve’s shape.

The framework not only offers a classification of the trends in the deaths curve’s evolution of

one country, but also allows for a comparison of such trends between different populations (e.g.,

between countries) or subpopulations (e.g., between females and males, different age groups, or

different socioeconomic or ethnic groups) at a glance.

For our analysis, we use sex-specific data and compute the age distribution at death for the

starting ages 0 and 60. This provides insights into the trends in the mortality structure for the

complete age range, as well as for the mortality structure of female and male retirees.

The remainder of this paper is organized as follows: In Section 2, we briefly describe the data

and outline how we prepare our input data prior to the analysis. In Section 3, we discuss the

classification framework we use. Section 4 covers some issues in the practical application of the

described framework, such as the smoothing of time series of single statistics, mathematical

methods for the detection of trends, and methods for analyzing the results. In Section 5, we

present and discuss our results. Finally, Section 6 concludes.

2 Data

To the best of our knowledge, there is no single, publicly available database that includes

mortality data for every population in the world, has a sufficiently long history, and has a data

quality that allows for an immediate comparison of data from different populations. Thus, we

have to find a trade-off between completeness, availability, quality, and standardization of our

input data. We use data from the Human Mortality Database (HMD, 2015), since it provides

mortality data that is highly standardized, of good quality, and easily available. Unfortunately,

the HMD provides mortality data for only 38 countries. For some of these countries, the HMD

offers data for subpopulations,1 which leads to a total of 42 different populations. Besides these

shortcomings in terms of completeness, we have decided to eliminate those calendar years in

the history of each population’s data where the HMD alerts the user to the lower quality of

the (input) data. Moreover, for the discussion of the results in Section 5, we only focus on

1These subpopulations are East and West Germany for Germany, England and Wales, Scotland and Northern
Ireland for the United Kingdom, and non-Maori and Maori populations for New Zealand.
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rather recent trends. Thus, we use only data after 1920 – i.e., roughly one century back – for

each population, even if the HMD offers data for the time prior to 1920.2 Finally, our analysis

requires input data for each population with a sufficiently long history, since we aim to detect

long term trends in the mortality evolution, rather than short-term fluctuation of mortality

evolution patterns. We have therefore decided to include only populations with a data history

of at least 40 years. This leaves us with 34 populations, a large portion of which are European

(see Section 4 for a list). For each population, we use sex-specific data, meaning we consider

females and males separately.

We use deaths and exposure-to-risk data each with discrete calendar year and age subscript to

calculate the discrete log force of mortality log(mx,t) for every age x between 0 and 109 and

every calendar year t where we have data. Thereafter, we smooth and extrapolate these log(mx,t)

in the age direction using P-splines. Given these smoothed log force of mortality curves for

every calendar year, we calculate the deaths curves, which we scale such that they integrate to

the value of 1 (i.e., we chose the radix 1 for the calculation of the corresponding survival curve).

Hence, these curves can be interpreted as the density functions of the distribution of the age

at death of a particular population. We calculate the curves for all populations, both sexes,

and every calendar year. Moreover, we compute deaths curves for starting ages 0 and 60, which

allows for a separate analysis of the trends of the deaths curve for the entire age range on the

one hand, and the age range of retirement on the other hand. Note that the deaths curve with

starting age 60 is the density function of the age distribution at death conditional on survival to

age 60.

3 The Classification Framework

Recently, Börger et al. (2016) developed a unique classification framework for mortality evolution

patterns, and they describe the advantages of this framework compared with previous approaches.

For instance, the framework gives a clear definition for each scenario that might (or might not)

prevail in the evolution of the deaths curve. Moreover, it allows for so-called mixed scenarios

(e.g., compression and extension at the same time) and is able to measure any significant change

in the deaths curve’s position and shape over time. As we use this framework here, we give a

short overview in this section.

The basic idea of this framework is to focus on the deaths curve and analyze its changes over

time. To this end, the framework consists of four components:

The first component is the modal age at death, M . It is defined as the position of the deaths

curve’s peak. Whenever this peak moves to the left or to the right (i.e., M is decreasing or

increasing), this is called left- or right-shifting mortality.

2The choice of the year 1920 is reasonable, since especially in the 1910s we have several historic events that
blur the long-term trends of the mortality evolution in many countries (for example, World War I and the
Spanish flu).
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The second component is the upper bound of the deaths curve’s support, UB, which is defined

as the age where the survival curve reaches 0.3 An increase or decrease of UB means that the

support of the deaths curve extends or contracts. Consequently, UB indicates extension and

contraction. These first two components, M and UB, together describe the evolution of the

deaths curve’s position over time.

The third component of the framework is the so-called degree of inequality DoI, which was

developed in Börger et al. (2016) to measure compression and decompression. Following their

definition, compression is a process in which the deaths curve becomes more unequal over time.

A perfectly equal deaths curve over all ages in this respect would be a uniform distribution of

the age at death on the age interval [0, UB]. Whenever the difference between this hypothetical

and the realized deaths curve increases or decreases, this is called compression or decompression,

respectively.

Finally the fourth component is the number of deaths at the modal age at death d(M), which

describes the relative importance of the age M compared with the remaining ages. Whenever

d(M) increases or decreases, this is called concentration or diffusion, respectively. The latter

two components, DoI and d(M), together describe the evolution of the deaths curve’s shape

over time.

Besides increasing and decreasing trends in these four statistics, the evolution of a statistic can,

of course, be neutral, which means that no (significant) change has occurred over time in the

concerned component. Thus, every possible evolution of a deaths curve between two points in

time can be expressed as a four-dimensional vector, where each component denotes the trend

of one statistic. For example, if we observe an increase in the first and third statistic while

the second and fourth do not change significantly, this vector would be (right-shift, neutral,

compression, neutral). Since we have four statistics and three attainable states of each component

of this ”scenario vector”, we obtain 81 different theoretically possible scenarios. Note that

some of these scenarios might not be relevant in practice. However, the complete set of the 81

scenarios guarantees that a scenario can be assigned to every possible mortality evolution. Also

note that the framework only detects qualitative rather than quantitative changes. Thus, we do

not answer the question of the pace of, say, right-shifting mortality, but answer the question if

we observe it at all.

For the estimation of the statistics, we follow the methodology described by Börger et al. (2016).

Note that, taking a theoretical perspective, both M and UB are independent from the starting

age of the deaths curve (as long as the starting age is smaller than M), although in practice,

the chosen estimators induce slight, nonsignificant differences between starting ages. That is

why, in what follows, we only display and discuss M0 and UB0 (i.e., the time series for starting

age 0) in order to reduce the number of charts and simplify the presentation of the results.

3We admit that in a theoretical, continuous setting, this age may not exist. However, we use data of finite
populations and in a discrete setting. Thus, there is an age where the oldest member of a population dies.
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4 Issues in Practical Application of the Framework

In this section, we cover issues that arise after the four statistics described in Section 3 have

been calculated. Figure 1 exemplarily shows the evolution of M for French males between 1920

and 2013. We do not smooth the input data by calendar years, so we observe considerable

random fluctuations in this figure. These random fluctuations can blur the long-term trends in

the time series, so we have to find methods to clearly decide when and where the statistic is

increasing, neutral, or decreasing, respectively.

In this respect, we search for periods (with specified limits) on which the time series follow

a linear trend. As a result, we get the direction of the respective trend (increasing, neutral,

and decreasing) and the position of the trend changes (i.e., the limits of these periods). Trend

changes can have two different qualities: either only the direction of the trend changes (we

observe a continuous trend change within the time series) or both the direction of the trend and

the level of the time series change at the same time (we observe a jump within the time series).

Such jumps may be caused by historical events (for example, World War II or the fall of the

Soviet Union) but also may be a result of changes in data-processing methods.

Figure 1: Evolution of Modal Age at Death (M) for French Males, 1920-2013
Note: The red line shows the fitted polygonal function. On the time bar, colors identify trends:
red = decreasing trend (not present in the example), yellow = neutral trend, green = increasing
trend, white = upward jump, black = downward jump.

We take a three-step approach proposed by Börger et al. (2016) to find the trends and trend

changes of the time series and refer to their paper for more details. Here we only give the basic
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idea: In the first step, we identify and eliminate outliers. For example, in Figure 1, we can

detect a considerable downward outlier in the year 1969, which has to be eliminated. In the

second step, we identify time periods within which the time series follows constant linear trends.

This particularly includes a determination of the optimal number of trend changes. As a result,

we have determined a fit of the time series (see red line in Figure 1). In the third step, for

each period from the second step, we test whether a given trend is significantly different from 0.

This gives us the desired direction of the trends (i.e., increasing, neutral, and decreasing). The

results of this test for M for French males are illustrated with a colored time bar in Figure 1.

To facilitate the analysis of the large number of results below, we will display time bar plots

that allow for an easy and intuitive comparison of the trends of each statistic between different

populations. To this end, we simultaneously display colored time bars (as in Figure 1) for

several populations in order to compare the trends and trend changes between the respective

populations at a glance. Green intervals on such time bars indicate increasing trends, yellow

and red intervals display neutral and decreasing trends, respectively. As mentioned above, we

observe both continuous trend changes and jumps. In the time bar plots, the color changes

only if the direction of the trend changes (e.g., from increasing to decreasing). If, however, the

direction remains unchanged and only the slope changes, this cannot be detected in such time

bar plots. For example in Figure 1, the continuous trend change around 1990 is not shown in

the time bar, as the direction of the trend does not change. In contrast, downward and upward

jumps are always illustrated with a white or a black one-year trend, respectively, even if the

direction of the trend does not change (see, for example, the upward jump in 1946 in Figure 1).

For our analysis, we construct these plots separately by sex and starting age. Since neighboring

countries frequently have similar trends in the mortality evolution, we sort the time bars by

regional clusters:

• Northwestern Europe: Sweden, Norway, Iceland, Finland, Denmark, Scotland, England

and Wales

• Central Europe: Netherlands, Belgium, Luxemburg, West Germany, Austria and

Switzerland

• Southwestern Europe: France, Spain, Portugal and Italy

• Eastern Europe: East Germany, Poland, Czech Republic, Slovakia, Estonia, Latvia,

Hungary, Bulgaria, Belarus, Ukraine and Russia

• North America: United States and Canada

• Asia-Pacific area: Japan, Australia and New Zealand (non-Maori and Maori)

Beyond displaying the trends in the four statistics over time for each population, we also analyze

similarities and differences across populations. For this, we have developed a figure that we
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call relative similarity (RS). Since we have only three potential values for each trend process

at each point in time, we use a rather simple approach: Let T (·) =
{
t
(·)
0 , ..., t

(·)
n(·)

}
be the time

range of a considered time series, and let (ut)t∈Tu and (vt)t∈T v be two trend processes. Then

utui ∈ {decreasing, neutral, increasing} and vtvj ∈ {decreasing, neutral, increasing}, respectively,

with i ∈ {0, ..., nu} and j ∈ {0, ..., nv}. Moreover, the number of common data points of these

two trend processes is given by N(u, v) = min(tunu
, tvnv

)−max(tu0 , t
v
0) + 1. For these data points,

we determine the relative similarity as

RS(u, v) =
1

N(u, v)

∑

τ∈Tu∩T v

δτ ,

where

δτ =





−1 if (uτ = decreasing and vτ = increasing) or (uτ = increasing and vτ = decreasing),

0 if (uτ = neutral and vτ 6= neutral) or (uτ 6= neutral and vτ = neutral), and

1 if uτ = vτ .

Note that the value of RS is always in the interval [−1, 1], where -1 means perfect dissimilarity

and 1 means perfect similarity. This concept not only allows us to compare single statistics

between different populations; we can also calculate the relative similarity of two populations –

for example, for females with starting age 0 in total. This can be done by computing the average

of the relative similarities for the four statistics.

5 Results

In this section, we present and analyze our results. We first analyze the trends (and trend

changes) in the mortality evolution of 34 populations for males with starting age 0 (i.e., the

complete age range) as a reference. We focus on the identification of supra-regional patterns, and

thereby we identify most similarities or differences in the trends of the deaths curve’s evolutions

of the considered populations. In the second part of this section, we also analyze the trends in

the mortality evolution of females and the trends in old-age mortality (i.e., with the starting

age 60). For the sake of brevity, however, we then only highlight differences compared with the

findings for males with starting age 0.

5.1 Reference Trends in the Mortality Evolution

In this subsection, we discuss the time bar plots for each statistic in detail before we summarize

these findings in order to provide a complete picture of the recent mortality evolution of males

with starting age 0. Since we have data for only few countries for the early years after 1920,

searching for supra-regional patterns is difficult. The first year where we have data for each
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population is 1971. Hence, we mainly focus on rather recent trends when we discuss the results.

Figure 2 displays the time bars for the modal age at death M . Prior to 1960, we find hardly any

supra-regional patterns in the trends of M . The only observation worth noting in this period is

an upward jump in the middle of the 1940s for many European populations, but also for Canada.

This is probably caused by World War II. During the 1960s, however, we observe a relatively

short period of left-shifting mortality (i.e., a decrease in M), particularly for most northern and

central European populations. However, for the majority of the populations outside eastern

Europe (and few other exceptions), we observe an inversion of this trend almost at the same

time around 1970 and an increase in the modal age at death afterward until the end of the

observation period.

Figure 2: Trends in the Evolution of Modal Age of Death (M): Males, Starting Age 0

In contrast, the modal age at death in most eastern European populations (except East Germany

and Poland) does not follow these trends. In particular, after 1970, we observe only neutral

trends or even left-shifting mortality at least until the early 1990s. It seems that the fall of

the Soviet Union for these countries had a certain impact on the evolution of the deaths curve,

because since then, we observe right shifts for many eastern European populations. However,

for the easternmost European populations, this trend change is less clear than for the other

eastern European populations, and thus we observe a certain degree of heterogeneity within the

eastern European cluster after 1990.

Figure 3 shows the time bars for the upper bound of the deaths curve’s support UB. Also

here, we can find apparent differences between eastern European populations and the other
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populations. Around 2000 at the latest, however, the direction of the trends of UB for all

eastern European populations assimilates to the direction of the trends for the other populations.

Moreover, we also find considerable differences within the eastern European cluster: On the

one hand, we observe contraction for the easternmost populations until the late 1990s. On

the other hand, we find only neutral periods (neither extension nor contraction) for the other

eastern European populations before 1990. Thus, the long-term trends within this cluster are

not homogeneous prior to 1990.

Figure 3: Trends in the Evolution of the Upper Bound of the Deaths Curve’s Support (UB):
Males, Starting Age 0

Apart from the observations for the eastern European cluster, there are hardly any supra-regional

trend changes for UB, especially during the first few decades. However, for example, almost

all northern European populations (except Iceland, which also shows different patterns for

M) experience extension over almost the entire observation period. This, however, could be

misleading, since there are single downward jumps in these time series, which interrupt the

overall increase in UB. Thus, if we would not admit for jumps in the time series (e.g., if we

would fit a straight regression line to the time series during this period), the observed long-term

trend might be not be significantly increasing any more. Also for most central European and

Asia-Pacific populations, we observe long-term extension at least after the 1970s. In the United

States and Canada, we have a two-decade period during the 1980s and 1990s where we observe

a neutral trend. Thus, the North American cluster is homogeneous in this respect but shows

special trends compared with the other populations.
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Figure 4 shows the trends in the evolution of the degree of inequality DoI0 for males. Until the

middle of the 1950s, we mostly observe compression with few exceptions, in particular around

the time of World War II. For the subsequent about two decades, there are several in parts

even opposing trends (e.g., in the northern European cluster). After that, however, we find

compression for almost all populations except eastern Europe until the end of the observation

period.

Figure 4: Trends in the Evolution of Degree of Inequality (DoI0): Males, Starting Age 0

Also with respect to the trends in DoI0, the eastern European and the other populations have

different trends, and we observe a similar heterogeneity in the direction of the trends, as for

UB (decrease in the easternmost populations and neutral in the other populations until about

1990). For a few years during the 1980s, we observe an increasing trend for Belarus, Ukraine

and Russia. Almost at the same time, we find an upward jump in the trends of Estonia and

Latvia. Thus, for those populations, we have a short but significant period of compression (or

an upward jump, respectively), even prior to the fall of the Soviet Union. For the easternmost

European populations as well as outside Europe, we observe several neutral periods during the

most recent decades. In particular, for the United States, we find almost two decades of neutral

trend, which may compensate for the upward jump in the middle of the 1990s.

Finally, Figure 5 displays the time bars for the numbers of deaths at the modal age at death

d(M)0 for males. For most populations, the trends in d(M)0 and DoI0 are very similar. However,

there are some exceptions. For example, in the United States, DoI0 did not change significantly

during the 2000s, but we observe diffusion (decreasing d(M)0) during that period. Moreover, for
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Austria, we observe decompression (decreasing DoI0) during the 1960s and 1970s while there is

concentration (increasing d(M)0) at the same time. Also, in Austria and West Germany, we

find a neutral period in the trend of d(M)0 during parts of the 1980s and 1990s, which has no

counterpart in the trends of DoI0. In Japan, we observe diffusion during the 1990s and the

first half of the 2000s, while we only observe a shorter neutral period for DoI0. Such examples

show that DoI and d(M) are not fully correlated and that these statistics indicate different

phenomena.

Figure 5: Trends in the Evolution of the Number of Deaths at Modal Age of Death (d(M)0):
Males, Starting Age 0

Figure 6 shows the relative similarity (RS) between each pair of the 34 populations (averaged

over all four statistics) and provides a summary of the similarities and differences of the trends

in the deaths curve’s changes. Where there is a higher RS between two populations, the

corresponding cell in this figure is brighter. Hence, in this figure, areas with white/yellow shades

point to clusters with higher relative similarity, whereas areas with more reddish shades indicate

larger differences. At first glance, we can detect bright areas in every corner of the figure. This

means we have high relative similarities among the northwestern, central and southwestern

European clusters, as well as the North American and Asia-Pacific clusters. Within these

areas, we find some horizontal and vertical patterns. These patterns identify potential outliers

regarding trends in the evolution of the deaths curve in their respective neighborhood. We

observe such vertical and horizontal patterns, for example, for Iceland and the Maori population

of New Zealand.
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As expected, the relative similarity between the eastern European populations and the other

populations is comparatively low, which again points to the difference in the trends between the

eastern European cluster and the other populations. Though within this cluster, the relative

similarity appears to be comparatively high, we also detect outliers here.

Figure 6: Average Relative Similarities for all Populations: Males, Starting Age 0

For the most recent decades, we can summarize three major observations. First, toward the

end of the observation period for most populations, we observe an increase for the statistics

measuring the position of the deaths curve (i.e., M and UB). This means that during that time

period, the deaths curves shifted to the right, and at the same time, the deaths curves’ support

extended. Some eastern European populations adopted these trends in the 1990s, which leads

to an almost global scenario of right-shifting mortality and extension at the same time. For

the majority of the other populations, this trend started even in the 1970s and thus is rather

long-term. The general trend toward increasing statistics can also be observed for the statistics

measuring changes in the shape of the deaths curve. However, here we observe more exceptions,
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both quantitatively and qualitatively, in particular in the eastern European cluster and outside

Europe. In summary, the global reference scenario – derived from the trends we observed for

males and apart from the exceptions mentioned above – for the most recent decades is (right

shift, extension, compression, concentration).

Second, around 1970 (plus or minus about a decade), we observe a considerable accumulation of

trend changes. For many populations, we observe a long-term increasing trend in many statistics

after that. Especially for M , we observe a trend change around 1970 for many populations at

the same time.

Finally, the trends in each of the four statistics for most eastern European populations experience

a change shortly after 1990. Prior to this trend change, the trends of the eastern European

and the other populations differ in general. Compared with the other populations, the eastern

European cluster appears to be rather homogeneous, although the trends in the easternmost

European populations and the other eastern European populations often are different.

5.2 Comparisons of the Trends in the Mortality Evolution

In this subsection, we analyze the mortality evolution of females with starting age 0 and the

evolution of old-age mortality (i.e., starting age 60) for both sexes, and we compare the results

with the results from Subsection 5.1. These analyses address two questions in particular: Are

there significant differences in the trends of mortality evolution between females and males?

And can we detect significant differences between the trends in the mortality evolution for the

complete age range versus old-age mortality?

Females vs. Males

Figure 7 displays the time bars for the modal age at death M for females. At first glance, the

patterns in the trends and trend changes for females are quite different from those of males. We

observe much more long-term right-shifting mortality, there is no left-shifting mortality during

the 1960s, and we cannot find the almost global trend change around 1970 that we observed for

males.

However, though we do not observe a decrease in M during the 1960s for females, we can observe

downward jumps for some populations at the end of the 1960s (e.g., England and Wales and

Austria). This effect might be connected to the left shift for males at that time. Further, we can

find a difference in the trends of some eastern European populations and the other populations,

although this is only true for the easternmost populations. Moreover, the right shift during

the most recent decades for most populations seems to be a unisex phenomenon. Thus, there

are some similarities between the trends of females and males, but in general, the sex-related

differences in the trends in M are considerable.

The trends in UB for females are shown in Figure 8. The differences between the trends of UB

for females and males are immaterial for some populations (e.g., the southwestern European
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Figure 7: Trends in the Evolution of Modal Age at Death (M): Females, Starting Age 0

cluster). The absence of sex-specific differences in the trend of UB for these populations

might point to a decreasing importance of the individual’s sex for the mortality structure with

increasing age. The difference between the trends for eastern European populations and most of

the other populations is also apparent for females. Also, we observe a very long-term increase

for females, which starts even earlier for some female populations than for the corresponding

male populations (e.g., in Belgium, Austria and the non-Maori population of New Zealand).

Some populations seem to follow this long-term extension, but these trends are interrupted by

downward jumps (e.g., in Norway, Luxembourg and West Germany).

Figure 9 shows the time bars for the degrees of inequality (DoI0) for females. The differences

between females and males here have the same quality as the difference between sexes for UB.

For some populations (e.g., Denmark), the sex-specific differences appear to be immaterial; for

others (e.g., Austria), we observe a very long-term increase (i.e., compression) for females, where

we observed periods of decrease (i.e. decompression) for males. Also, the sex-specific trends in

DoI0 are completely different in certain single populations (e.g., the Maori population of New

Zealand). All in all, we can state two things: First, the supra-regional patterns we identified in

the trends of DoI0 for males seem to be unisex phenomena. Second, however, when looking at

single countries, we sometimes find considerable differences between sexes.

The time bars for the trend in the numbers of deaths at the modal age at death d(M)0 for females

are displayed in Figure 10. As for the other statistics, we also observe more long-term increases

in d(M)0 (i.e., concentration) than for males. In particular, for most central, southwestern and
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Figure 8: Trends in the Evolution of the Upper Bound of the Deaths Curve’s Support (UB):
Females, Starting Age 0

Figure 9: Trends in the Evolution of Degrees of Inequality (DoI0): Females, Starting Age 0
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eastern European populations, these differences between sexes become apparent. For the eastern

European cluster in general, we observe less diffusion for females than for males. In contrast,

for few northern European populations (e.g., Denmark), we observe diffusion between about

1960 and 1990, which we cannot find for males.

Figure 10: Trends in the Evolution of the Numbers of Deaths at the Modal Age at Death
(d(M)0): Females, Starting Age 0

Across statistics, we find increasing trends for females during the most recent years. Thus,

then the trends of the deaths curve’s evolution coincide for both sexes for most populations.

However, there are apparent sex-specific differences in the trends of the deaths curve’s evolution

over the entire observation period. This is supported by Figure 11, which shows the relative

similarity (RS) between sexes for the starting age 0.4 For the majority of the populations (27

out of 34), the relative similarity is smaller than 70 percent, and there are only four populations

(Luxembourg, Switzerland, Italy and Japan) where the RS exceeds 80 percent. Not least, this

finding illustrates the importance of a sex-specific consideration of mortality evolutions, as

females and males have experienced different trends in the mortality evolution during the last

100 years. Thus, for example, for the usage of unisex models, it must be carefully checked

whether the model is applicable and reasonable, depending on the question at hand.

Moreover, we can see from Figure 11 that the sex-related differences of the trends in the deaths

curve’s evolution are relatively high (i.e., low RS) for most of the eastern European populations.

4We first calculate the relative similarity between sexes (instead of populations) per statistic and population.
After that, we determine the arithmetical mean between relative similarities for the four statistics per population.
The formulae we use here are analogous to those described in Section 4.
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Figure 11: Relative Similarity (RS) Between Females and Males: Average of All Statistics,
Starting Age 0

For this cluster, we can find only three populations whose RS exceeds 60 percent: East Germany,

Estonia and Bulgaria. In comparison, the RS between sexes for central and southwestern

European populations, for example, is rather high. Thus, we can identify regions where the

sex-related differences in the deaths curve’s evolution are usually larger than in other regions.

Moreover, also in neighboring countries (e.g. Austria and Switzerland), the RS between sexes

can differ significantly. Note, however, that a low RS for sexes does not necessarily imply a

great difference in the level of mortality between both sexes.

To conclude the analysis of the sex-related similarities and differences of the trends in the deaths

curve’s evolutions, we can state three major findings:

1. Regarding left- or right-shifting mortality, the differences between females and males

appear to be significant. However, during the most recent years, the direction of the trends

for both females and males tends to converge toward right-shifting mortality.

2. Regarding compression or decompression, we cannot find any clear difference between

females and males. Despite some sex-specific differences for some populations, the generally

observed trends seem to be unisex phenomena.

3. Regarding extension or contraction and concentration or diffusion, respectively, there are
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few sex-related differences. However, these differences cannot be regarded as immaterial.

Starting Age 0 vs. 60

Before we compare results for different age ranges, we recall that, as mentioned in Section 3, the

modal age at death and the upper bound of the deaths curve’s support are independent of the

choice of the starting age. Thus, periods of left- or right-shifting mortality as well as extension

or contraction coincide for both age ranges. Therefore, in this subsection, we only consider the

trends in DoI60 and d(M)60 and compare them with DoI0 and d(M)0, respectively.

Figure 12 displays the time bars for the degrees of inequality DoI60 for males. At the first

glance, we can see that there are many more and much longer periods of neutral trends or

even decreases in DoI60 than in DoI0. Indeed, for DoI0, we observed an increasing trend for

many European populations after World War II, which seemed to be interrupted by relatively

short periods of decompression or jumps. Though we observe a long-term compression for the

retirees in a few populations (e.g., Sweden, the Netherlands, Belgium, Japan and Australia),

the majority of the European populations do not experience an increase in DoI60 before the

1980s or even later.

Figure 12: Trends in the Evolution of the Degree of Inequality (DoI60): Males, Starting Age 60

For most of the eastern European populations, we do not even observe any period of compression,

but rather long-term decompression for the starting age 60. Thus, we have no apparent trend

change there during the 1990s. For the other European populations (except Italy), however,

we do not observe any decompression after the early 1960s, but rather neutral trends. This
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observation again underlines the differences in the trends of the mortality evolution between the

eastern European populations and the other (European) populations even for the starting age

60.

For some non-European populations, we found some neutral periods in the most recent decades

for the starting age 0. This also is not true for the starting age 60. Moreover, in the early

decades of the observation period, we find compression for the starting age 0 and decompression

for the starting age 60 for these populations. Thus, we can even observe opposing trends at

that time for different starting ages.

Figure 13 shows the trends in the numbers of deaths in the modal age at death d(M)60 for males.

For d(M), the differences between the starting ages are even bigger than for DoI. Before the

late 1960s, concentration occurred only for single populations and for rather short time periods.

Instead, we globally observe neutral trends or even diffusion for most populations. Starting in

the late 1960s, we find a short trend of concentration for single populations across the world (e.g.,

England and Wales, Italy, East Germany, Bulgaria and the United States). However, during

the 1980s, we have a rather comprehensive trend of diffusion. Only in the last few decades we

observe a comprehensive trend of concentration for almost all non-eastern European populations.

In contrast, for most eastern European populations, we observe a continued diffusion until the

end of the observation period.

Figure 13: Trends in the Evolution of the Numbers of Deaths at the Modal Age at Death
d(M)60: Males, Starting Age 60

For females, the differences between DoI0 and DoI60 and between d(M)0 and d(M)60, respec-
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tively, are much smaller than for males (see Figures 16 and 17 in Appendix A for starting age

60). Since we cannot obtain any new insights here, we do not carry out the comparisons in

detail. However, in what follows, we briefly discuss the similarity (or dissimilarity) of the trends

in the deaths curve’s evolution between the starting ages for both sexes.

Figures 14 and 15 show the relative similarities between the starting ages 0 and 60 for males

and females, respectively, as an average over all four statistics over the entire observation period.

We observe that the relative similarities between the different starting ages are much smaller

for males than for females in general. For females, the trends in the deaths curve’s evolution

appear to be dominated by changes in the mortality at older ages, thus leading to similar trends

for both starting ages. For males, in contrast, changes in the deaths curve below age 60 seem

to have a more relevant impact, as they significantly change the trends observed only for ages

above 60. This once again illustrates the differences in the trends of the mortality evolution

between females and males.

In conclusion, we can state that there are considerable differences in the trends of DoI and

d(M) between the starting ages 0 and 60. These differences are more significant for males than

for females.

Figure 14: Relative Similarities Between Starting Ages 0 and 60: Average of All Statistics,
Males
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Figure 15: Relative Similarities Between Starting Ages 0 and 60: Average of All Statistics,
Females

6 Conclusion

In this article, we discuss and apply a classification framework for mortality evolution patterns

that was recently introduced by Börger et al. (2016). This framework consists of four components,

which together uniquely define a scenario of mortality evolution. The modal age at death M

and the upper bound of the deaths curve’s support UB indicate changes in the position of the

deaths curve, where M measures right- or left-shifting mortality and UB measures extension or

contraction, respectively. The degree of inequality (DoI) and the number of deaths in the modal

age at death d(M) indicate changes in the shape of the deaths curve, of which DoI measures

compression or decompression and d(M) measures concentration or diffusion, respectively.

We calculate these statistics for 34 populations separately for males and females and for the

starting ages 0 and 60. Thus, we obtain 544 time series, which we have to rework. For this

purpose, we discuss several methods. In addition, we introduce the relative similarity (RS),

which enables us to efficiently compare each pair of trend processes with three attainable states.

In the discussion of the results, we first focus on the trends in the deaths curve’s evolution

of males with starting age 0. Here we obtained three major findings. First, during the most

recent years, all four statistics increase for almost all populations, which generally is a long-term

effect for all populations outside eastern Europe. Second, at least until the 1990s, the eastern
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European populations experience different trends than the other populations. And third, during

the 1960s, we observe a comprehensive decreasing trend, especially for M , and an inversion of

this trend around 1970 for many populations at more or less the same time. This allows for two

conclusions: there are supra-regional patterns in the trends of the change of the deaths curve,

and there is no single global pattern for these trends. Both findings must be taken into account

in future research on this topic.

By comparison of these findings to the trends in the deaths curve’s evolution of females, we

obtain different results. Regarding left- or right-shifting mortality (i.e., the trends in M), the

differences between males and females are considerable. In contrast, the differences between

females and males regarding compression or decompression (i.e., the trends in DoI) appear to

be immaterial. Finally, for extension or contraction (i.e., the trends in UB) and concentration

or diffusion (i.e., the trends in d(M)), respectively, we can find certain differences between sexes

but also some similarities. However, the increase in all four statistics during the most recent

decades seems to be an almost-global unisex phenomenon. Analyzing the RS between females

and males per population, we indeed find large differences in the trends of the deaths curve’s

evolution between sexes. Moreover, we find regions where these sex-related differences are larger

or smaller than in other regions. For instance, in eastern Europe, the RS between sexes in

general is smaller (meaning larger differences) than for other populations.

The trends in DoI and in d(M), respectively, for the age range beyond age 60 in general show

fewer long-term increasing trends than for the complete age range. Consequently, we observe

multiple periods where these statistics show opposing trends for the two starting ages for males.

In contrast, for females, the differences of the trends in these two statistics between the starting

ages are rather small. We therefore analyze the RS between the starting ages for both sexes

and find that these similarities indeed are smaller for males than for females. This repeatedly

illustrates the need for sex-specific analyses of mortality structures and sex-specific mortality

modeling.

The insights of the present analysis especially can be helpful for the application of mortality

models. There, the first step, of course, is to find a suitable model. The second step, however, is

the calibration of the model to historical data. Conventional mortality models do not incorporate

trend changes. Therefore, such models should be calibrated to periods of time series where the

change of the deaths curve follows a constant trend. With this analysis, we can exactly refer to

such periods. Moreover, for the application of more sophisticated models (e.g. multi-population

mortality models), this analysis provides findings about coherent populations. For example, is it

reasonable to apply a multi-population mortality model to data from Belgium, the Netherlands

and Luxembourg in order to obtain more reliable mortality rates for the comparatively small

population of Luxembourg? And if that appears to be reasonable, is this still true if we

considered sex-related mortality and/or old-age mortality?

Moreover, the methods introduced here can be very useful for governments, life insurers and

pension funds whenever trends in the mortality evolution need to be analyzed in the context of
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surrounding, dependent or superior populations. For instance, these methods enable life insurers

to test the trends in the mortality structure of their portfolios for consistency with the country’s

general public.

Not least, these findings hopefully will initiate further research in more explanatory disciplines,

such as epidemiology, medicine, biology, sociology and demography. To our knowledge, for

example, the sex-related differences in the mortality structure (and consequently also in the

trends of the mortality evolution) are still an open field of research. Moreover, from our point

of view, the differences in the trends of the deaths curve’s evolution between the starting ages,

especially for males, are worth further research.
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Appendices

A Trends in the Mortality Evolution of Females With

Starting Age 60

Figure 16: Trends in the Evolution of Degrees of Inequality (DoI60): Females, Starting Age 60
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Figure 17: Trends in the Evolution of the Numbers of Deaths at the Modal Age at Death
d(M)60: Females, Starting Age 60
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Abstract

Questions related to the existence and specification of a limit to human lifespan lead

to heated discussions in several scientific fields such as biology, demography, medicine, or

actuarial sciences. In the present paper, we contribute to this discussion from a statistical

point of view. To this end, we use combined mortality data of US females obtained from

the International Database on Longevity as well as the Human Mortality Database. The

use of old-age mortality data typically raises two issues: sparse information on the old

ages and censored observations. Up to the present paper, this censoring issue mostly has

been ignored in previous investigations on the maximum human lifespan. We address this

accordingly by combining sub-sampling and cross-validation techniques with recent results

on censored extreme value theory. As the main result, we estimate the maximum lifespan

of US females for moving intervals of nine calendar years between 1980 and 2003.
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1 Introduction

The dream of immortality is not only subject to legends, science fiction, and fairy tales but also

has attracted the attention of researchers from many different fields of science. Who has not yet

dreamed about the possibility to extend the individual lifespan to ages that have never been

reached before? Following, for example, de Grey (2003) immortality may become reality in near

future. On the other hand, there may be a natural limit to human life which probably is just

not yet in sight. Or maybe we have already reached this limit. For example Dong et al. (2016)

found ”evidence for a limit to human lifespan” which is supported by a comprehensive data

analysis. However, they base their claims on statistics like the maximum reported age at death

which completely ignores people who are still alive at highest ages. Others like, e.g., Fries (1980)

found natural constraints to longevity while a few decades later reality exceeded their forecasts.

Recently, Rootzén and Zholud (2017) concluded that ”human life is unbounded but short”.

However, their statistical analysis is based on small sample sizes and thus may lack power, see

also Section 3 below. In any case, as pointed out by Weon and Je (2009), ”the existence of

maximum human lifespan remains a puzzle in aging research”.

From a statistical point of view, all of these questions are related to the support of the density

function of the underlying age distribution at death (the so-called deaths curve) and lead to

investigations about its right endpoint. The current paper studies them for US females by

means of modern statistical methods from extreme value theory (EVT). Since the deaths curve

typically changes over time (see e.g. Börger et al., 2018) its right-endpoint also changes over

time (see e.g. Cohen and Oppenheim, 2012; Wilmoth et al., 2000). We, therefore, study the

evolution of the deaths curve’s right tail over moving time periods.

For this analysis, we use data from the International Database on Longevity (IDL, 2017) and the

Human Mortality Database (HMD, 2015). To avoid gender effects and to ensure an acceptable

data quality and quantity we focus on data of US females. The HMD is one of the largest

publicly available databases on mortality in the world. However, many observations in the HMD

are right-censored, particularly at the age of 110. This prohibits a gain of information about the

right tail behavior of the deaths curve. However, it is well-known that there have been humans

which survived the age of 110 (see e.g. Robine and Allard (1998) for the famous case of Jeanne

Calment) and thus the HMD data alone is not suitable for any EVT analysis. In contrast, the

IDL is more informative regarding the death counts of the highest ages: It provides the exact

age and time of death of so-called supercentenarians, i.e. individuals who at least reached their

110th birthday. The IDL covers death counts of 309 US female supercentenarians in the time

span 1980–2003. This allows for a statistical analysis in the classical EVT framework (see de

Haan and Ferreira, 2006; Falk et al., 2010; Reiss and Thomas, 2007; Resnick, 2013) which for

example has been applied to estimate the maximum attainable age for the Netherlands and

Belgium by Aarsen and de Haan (1994) and Gbari et al. (2017) and Einmahl et al. (2019),

as well as for Canada and Japan by Watts et al. (2006). Since such an analysis has not been
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carried out for the US alone, we start our investigation with the IDL. Since 309 is a rather

small number for quite a large time horizon we increase the inferential accuracy by subsequently

combining the datasets of the IDL and the HMD. We then study this combined data set (CDS)

over moving time intervals, each of 9 years length. In this way, we evaluate the progression of

the lifespan distribution from 1980–2003. As a by-product, working at smaller time intervals is

more convincing with respect to the usual iid assumption underlying EVT methods. Moreover,

it allows for an adequate treatment of the present truncation by incorporating survivors of each

time interval as right-censored observations. To take care of these issues in an adequate way we

employ methods from censored EVT following Einmahl et al. (2008), see also Gomes and Neves

(2011) and Worms and Worms (2014) or Gomes and Guillou (2015) for other censored EVT

approaches.

To our knowledge, this is the first paper on estimating the maximum lifespan in a population

that

• employs methods from censored EVT and

• includes old-aged survivors in the analysis

• while adequately dealing with the underlying censoring issue.

The remainder of this paper is organized as follows: Section 2 gives a detailed description of two

employed databases and discuss their structure. Moreover, in this section, we describe how we

construct a combined data set which exploits the advantages of both databases and we make a

quantitative analysis of this data set. Thereafter, in Section 3 we introduce and apply classical

EVT methods to analyze the IDL data alone and illustrate our findings. As this leads to results

which are neither statistically significant nor rigorous, we analyze the combined data set by

means of censored EVT in Section 4. The results are illustrated and discussed in Section 5 and

the paper closes with some conclusions and an outlook in Section 6.

2 Data Description

In this section we cover different aspects of the data used for our research. Unfortunately,

there is no publicly available database that includes complete mortality and survival data for

a sufficiently long history while providing the complete age range for all covered populations.

Nevertheless, we admit that there are databases giving detailed information on survival as well

as the time and age at death. But often these databases are not publicly available and only

cover single populations. In particular, this complicates the comparison of results. We therefore

decided to analyze publicly available data. In what follows, we first describe some characteristics

of the databases underlying our investigations. We then describe how to exploit their advantages,

and finally make a quantitative analysis for the estimation of the deaths curve’s right endpoint.

Research Papers 3 The Myth of Immortality

79



2.1 Characteristics of the HMD and IDL Databases

Our research is based on data from two different databases: the International Database on

Longevity (IDL, 2017) and the Human Mortality Database (HMD, 2015). As outlined in the

introduction we focus on US females to have a rather homogeneous population and a sufficiently

large sample size.

The IDL contains data for 15 industrialized countries. Each of its records relates to one

individual dying after its 110th birthday, where the individual’s age at death is given exactly

in days from their birthday and it is supposed to be free of age ascertainment bias (see Maier

et al., 2010). For the US the IDL provides the age and time of death of 309 females dying at

the age of 110 or beyond between 1980 and 2003. The oldest US female recorded in the IDL

reached an age of 43560 days (i.e. 119 years and 97 days). These figures illustrate a major

issue of the IDL: Its exactness and lack of ascertainment bias inevitably lead to a reduction in

the number of observations. Thus, the data may underestimate the count of supercentenarians

dying in the years between 1980 and 2003. Maier et al. (2010) explain the process of validation

of the IDL data and conclude that the IDL fits the profile of the US female population well

in general though it probably underestimates the absolute number of people dying in this age

range. A further disadvantage of the IDL is the lack of survival data: We only know the time

and age of death of some very old US females but there might be some individuals still alive in

similar or even higher ages. Moreover, the IDL stopped collecting data after 2003.

In contrast to the IDL the HMD covers mortality and population size (i.e. survival) data

of 38 different countries, where death counts are obtained in up to three dimensions: age at

death, calendar year of death, and calendar year of birth. The HMD edits the input data to

obtain a homogeneous structure over calendar years per population but also across populations.

To reduce complexity we pass on the information of the year of birth and only employ the

single-year and single-age death counts and population size (survivor) data. Unfortunately the

HMD only supplies age and time discrete data, i.e. we only know how many members of a

population die during the (integer) year t and in the (integer) age x, but we neither know the

exact date of death, nor their exact age at death. We therefore follow Wilmoth et al. (2017) and

assume the date of death as well as the date of birth during a calendar year to be uniformly

distributed. In this way we can redistribute the death counts per calendar year and thus work

with a non-integer time and age at death. Similarly, we can derive an age structure of the

population at the end of a calendar year.

For our analysis, we extracted HMD population size data for US females for the time horizon

from 1980 – 2003. In sum it includes almost 26 million deaths over all ages whereof 1853 females

are deterministically right-censored at 110, i.e. died at the age of 110 or beyond. This means

that the HMD only contains single age mortality data up to the age of 109 and a cumulative

entry 110+ thereafter. This constricts the estimation of the maximum attainable age. For this

reason, we additionally merge the IDL into the HMD for the analysis. This combination exploits
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the quantity of the HMD and the quality of the IDL data.

2.2 Combining the Data – the CDS

The input data of the HMD for US females builds on several official population and health

statistics of the United States. In this sense, the data is likely to be complete with regard to

the US population in general. Thus, it is reasonable to assume the IDL population being a

sub-population of the HMD population. With this assumption we combine them as follows:

First, as we are interested in old-age mortality, we only include the HMD data (death counts

and survivors) beyond the age of 97. The inclusion of survivors thereby adds right-censored

observations to our time interval (1980–2003) of interest. Second, for each calendar year, we

randomly delete as many deaths counts from the HMD deaths counts’ entry 110+ as we observe

deaths in this age range in the IDL. Finally, we derive the number of survivors of each calendar

year from the data of the IDL. This is possible as we know the exact age and time of death

of each individual recorded in the IDL. We randomly delete as many survivors of the HMD

as we have survivors implicitly given by the IDL for each calendar year and each age in the

age span beyond 97. This merges the IDL into the HMD and avoids double counts in the

resulting data set which we denote as CDS (combined data set). Later on, we analyze the

CDS with censored EVT techniques introduced in Einmahl et al. (2008) which require the

assumption of iid observations. However, since the structure of mortality typically changes over

time, this presumption may not be reasonable for the complete time horizon of the CDS of 24

calendar years. Since evaluating on an annual basis would lead to rather small sample sizes,

particularly with respect to the proportion of the IDL data in the CDS per period, we found a

compromise: We run our analysis on time windows of nine adjacent calendar years. In each step,

these windows are shifted by one-year, i.e. we start with the window between 1980 and 1988,

proceed with the window between 1981 and 1989, and so on, ending with the window between

1995 and 2003. We treat the records for fixed windows as realizations from independent and

identically distributed random variables that may be subject to independent right-censoring.

The assumption on identically distributed random variables on each window appears to be more

convincing compared to the entire period 1980–2003. Moreover, analyzing moving windows

enables us to evaluate the evolution of the deaths curve’s right endpoint over time.

2.3 Quantitative Analysis of the Databases

To get a picture of the data bases we compare the values of the IDL and the HMD (for the

records beyond 97 years; without double counts) in Table 1. For each window the absolute

numbers of death counts and censored observations are shown. For the HMD the latter is split

into censored individual surviving the time window (i.e. the subject died at a later time point)

and censoring due to HMD-specific missing information for ages beyond 110 (110+ entries)
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HMD IDL

Observed Censored observations Observed % of all CDS Censored
Window death due to death deaths in the due to

counts 110+ entries survivors counts range 110+ survival

1980-88 184752 624 85577 72 10.34 14
1981-89 198520 616 90676 79 11.37 14
1982-90 212466 624 95641 87 12.24 18
1983-91 227203 614 101020 84 12.03 32
1984-92 240896 617 105983 102 14.19 24
1985-93 257341 656 108517 118 15.25 23
1986-94 272599 657 110999 129 16.41 22
1987-95 287816 666 112084 135 16.85 28
1988-96 301362 675 115006 145 17.68 24
1989-97 314376 706 118120 152 17.72 30
1990-98 327949 732 119849 157 17.66 36
1991-99 342915 729 121968 168 18.73 45
1992-00 356859 752 123306 181 19.4 27
1993-01 370065 760 124548 173 18.54 11
1994-02 380731 751 125481 159 17.47 3
1995-03 391504 746 127637 142 15.99 0

Table 1: Shown are the window-specific sample sizes of the censored and uncensored observations
in HMD and IDL together with the portion of the IDL in the higher age entries (older than 110
years) of the CDS.

which is responsible for less than 1% of the censored observations. As the IDL collects the exact

age at death, observations from the IDL are only censored due to survival of the specific time

window. This quantity decreases in the last four windows since the IDL only covers data up to

the year 2003. As a small caveat, we note that this issue may lead to a slight under-estimation

of the right endpoint in the last four windows. In addition to the absolute death counts in the

IDL also its portion in the number of death counts in the age range beyond 110 from the CDS

is shown. This portion ranges between 10% and 20%, which means that for each window at

least one of ten US female supercentenarians dying is an uncensored observation in the CDS.

The portion of the IDL data in all deaths of the CDS per window is much smaller (between

about 0.03% and 0.05%) but this is mainly due to the high number of observations from the

HMD in the age range between 97 and 109. Finally, the corresponding CDS death counts are

obtained by summing up column two and five, whereas for the censoring counts columns three,

four and seven are required. It is apparent that these values reveal an increasing trend over the

windows. This is in line with the findings of, e.g. Robine and Paccaud (2005), who found that

the number of old Swiss people increases over time.

In what follows we first study the IDL data with classical EVT techniques for the whole time

interval 1980–2003 as the IDL counts within each window are rather small (Table 1). We then

3 The Myth of Immortality Research Papers

82



use the results as motivation for a more sophisticated analysis of the CDS with censored EVT

methods for the moving windows.

3 Classical EVT Analysis of the IDL

Consider the classical EVT framework given by iid random variables Xi ∼ F with unknown

cumulative distribution function (cdf) F . Here Xi indicates the age at death of subject i and we

are particularly interested in the right endpoint of the cdf F , i.e. xF := sup{x : F (x) < 1} ≤ ∞.

Since we do not want to presume the existence of a limit to human lifespan, we should also

allow for an infinite lifetime, i.e. for xF =∞. For estimating xF there exist two well-established

EVT approaches, each employing a different class of distributions: the generalized extreme value

distributions (GEV) and the generalized Pareto distributions (GPD). In what follows, we briefly

describe these two approaches and refer to de Haan and Ferreira (2006) for more details and

proofs.

The GEV is based on the Fisher-Tippett Theorem (see Fisher and Tippett, 1928). It describes the

class of potential limit distributions Gγ of the standardized maximum (max1≤i≤n{Xi} − bn)/an

for suitable sequences an > 0 and bn. The class of GEV Gγ(ax+ b), is given by

Gγ(x) =





exp
(
−(1 + γx)−

1
γ

)
, 1 + γx > 0 γ 6= 0

exp (− exp(−x)) , x ∈ R γ = 0,
(1)

where a and b are scaling and location parameters which can be estimated from the current

dataset.

While this concept is rather general, a GPD approach seems to be more suitable with respect to

the left truncated IDL data since it considers values above a given threshold t (see Balkema and

de Haan, 1974), say t = 110 in case of the IDL. To this end, we are interested in the distribution

Ft(x) = P(X1 − t ≤ x|X1 > t). For example de Haan and Ferreira (2006) show that the limit

equation limt→xF supxF−t<x<0 |Ft(x)−Hγ,σ(x)| = 0 can only be fulfilled for distributions from

the GPD given by

Hγ,σ(x) =





1−
(
1 + γx

σ

)−1
γ for γ 6= 0

1− exp(−x
σ
) for γ = 0,

(2)

where σ is again a scaling parameter.

In both cases, the extreme value index (EVI) γ is the key parameter that characterizes the tail

of the limit distribution. In particular, the value of γ separates two different cases: If γ < 0

holds (case (i)), the considered distribution has a finite right endpoint which corresponds to a

finite maximal age. Contrariwise, if γ > 0 holds (case (ii)), the right endpoint is infinite and US

females may have the potential to live forever. For the decision between the cases (i) and (ii)
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and for the estimation of xF we need adequate estimators for γ. The recent literature discusses

several different estimators, some of which are valid only for EVIs in certain intervals (see e.g.

Pickands (1975) or Dekkers et al. (1989) for early work on this topic and de Haan and Ferreira

(2006) and Resnick (2013) for reviews). However, we particularly allow for positive values of the

EVI. This basically leaves us with two choices of estimators for γ: the moment estimator (Mom)

for the GEV approach and the maximum likelihood estimator (MLE) for the GPD approach.

The latter is defined as that value of γ which maximizes the likelihood during a fit of the GPD

model to the data while the moment estimator is defined as

γ̂Mom
n (k) := M (1)

n (k) + 1− 1

2

(
1−

(
M (1)

n (k)
)2
/M (2)

n (k)
)−1

, (3)

where M
(j)
n (k) := 1

k

∑k
i=1 (log(Xn−i+1,n)− log(Xn−k,n))j and Xi,n denotes the i-th order statistic.

Other estimators such as Pickands or Hill estimators have not been considered due to restricted

EVI values (Hill) or less efficiency (Pickands), see e.g. the discussion in Section 3 of de Haan

and Ferreira (2006). In what follows, γ̂
(·)
n (k) denotes the EVI estimator, where k is the number

of upper order statistics used and (·) indicates the short-form of the estimator (i.e. MLE or

Mom, respectively). The choice of k as a function of the number of observations n is crucial for

a good estimate. Since both estimators are consistent for γ and even asymptotically normal

if k → ∞ while k
n
→ 0, we should not choose k too small or too large. To this end, e.g. de

Haan et al. (2016) describe the following observation: the smaller the values of k, the higher

the variance of the EVI estimator while for increasing k the bias of the EVI estimator gets

larger. Finding a suitable k between these extremes is called the bias-variance trade-off. To

get a first idea of the choice of k, we perform a graphical inspection: Figure 1 shows both the

moment and maximum likelihood estimates for the IDL depending on k and the point-wise 95%

confidence intervals (CI) for both estimates (where we employed the methods of Aarsen and de

Haan (1994) for the construction of the Mom-based CI and carried them over to the MLE-based

CI for a better comparison).

From Figure 1 we can see that both EVI estimates are positive for k ≤ 46 and negative for

k > 46. Interpreting values of k ≤ 46 as too small this suggests a negative EVI-estimate

corresponding to a finite maximal attainable age. However, the CI or more decisively the

one-sided CI (not shown here) portend that the null hypothesis H0 : γ > 0 of a positive EVI

cannot be rejected at the significance level of 5%. In particular, the asymptotic one-sided z-test

for H0 based on the MLE (Mom) gives an approximate p-value of 0.2349 (0.2183). Thus, the

hypothesis of a potentially infinite lifetime cannot be rejected based on data from the IDL and

the methods described above. If we ignore this statistical insignificance for now and only take

into account that the EVI-estimates are negative for k > 46, we can nevertheless estimate a

maximum attainable age. To this end, we have to find a suitable k. A general recommendation,

or rule-of-thumb, is to choose k in a region where these estimates stabilize. Incorporating the

bias-variance trade-off as well as the asymptotic framework, this points us to a choice of k
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Figure 1: Point estimates k 7→ γ̂
(·)
n (k) of the EVI based on the MLE and Mom approach as a

function of k together with point-wise 95% CI for the IDL.

between 100 and 200. The minimum, maximum and median of the MLE and Mom estimates for

γ with k between 100 and 200, the corresponding value of k, and the 95% confidence intervals

are given in Table 2.

γ̂
(·)
n (k) (95% CI for γ) k x̂

(·)
F (k) (95% CI for xF )

min MLE -0.0711 (-0.2173, 0.0751) 155 132.30 (91.62, 172.98)
Mom -0.0942 (-0.2773, 0.0888) 106 127.49 (99.53, 155.45)

median MLE -0.0572 (-0.2205, 0.1061) 128 136.71 (68.37, 205.05)
Mom -0.0663 (-0.2247, 0.0921) 142 133.11 (84.14, 182.08)

max MLE -0.0385 (-0.1978, 0.1207) 140 147.60 (02.92, 292.28)
Mom -0.0418 (-0.2032, 0.1196) 139 144.49 (21.32, 267.66)

Table 2: MLE- and Mom-estimates of the EVI (γ) and the right-endpoint (xF ) for the IDL data
together with 95% confidence intervals for different choices of k.

As already seen in Figure 1 the CIs are rather wide and each contains the value of 0, i.e. a

potential infinite lifetime cannot be rejected at level 5%. This may be explained by the small

sample size and a potentially negative γ that is quite close to zero (i.e. does not lie far in the

alternative). However, each of the estimated EVI values corresponds to a different GPD (MLE

case) or GEV (Mom case) and can be used to estimate the right-endpoint of the underlying

distribution.

For illustration, exemplary QQ-plots for both median values are given in Figure 2. There the

empirical quantiles of the IDL data are plotted against simulated quantiles of the respective

distribution functions and the solid lines denote the corresponding regression line, respectively.

Both plots show an acceptable fit with a considerable advantage for the GPD model (left panel).

This additionally reassures the potential applicability of both EVI approaches. We also investi-

gated whether the underlying distribution function lies in the maximum domain of attraction
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of Gγ for the above choices of γ < 0. By means of the test of Dietrich et al. (2002) with the

critical value proposed in Huesler and Li (2006) we could not reject this.

Figure 2: QQ-plots of empirical quantiles over simulated quantiles; left panel: pareto distribution
with γ = −0.0572; right panel: generalized extreme value distribution with γ = −0.0663. The
solid lines visualize the regression line for the plots.

In the next step, we determine the right endpoint of the corresponding models. As explained

around Equation (1) above, we need to estimate the scaling and location parameters a and b,

in order to find a GEV. To this end we apply the method described in Section 3 of de Haan

and Ferreira (2006) and finally obtain estimates for the maximum lifespan x̂Mom
F (k) (GEV) and

x̂MLE
F (k) (GPD), respectively. The estimators again depend on the tuning parameter k and

are consistent and asymptotically normal under similar regularity assumptions. With this, we

can construct 95% CIs. The last two columns of Table 2 show the minimum, median, and

maximum of the MLE and Mom endpoint estimates with the corresponding asymptotic 95% CIs

and the value of k referring to the endpoint estimates x̂Mom
F (k) and x̂MLE

F (k), respectively. The

obtained estimates for the maximum lifespan fluctuate between 127.49 (GEV with minimum

EVI Mom-estimate) and 147.6 years (GPD with maximum EVI MLE-estimate). This suggests

that the sample size is probably not sufficient for more precise results. Moreover, the confidence

intervals are again (too) wide. In particular, for the larger EVI estimates the asymptotic

behavior of the underlying variance estimator (which is of order O(1/γ4) for γ → 0) cannot be

countervailed by the sample size which leads to the given CIs with poor relevance.

4 A Censored EVT Analysis of the CDS

The results of the previous section are neither statistically significant nor rigorous. As a

consequence, we need to significantly increase the sample size of the dataset. Moreover, the

neglect of present censoring as well as the underlying iid assumption for the whole time span

may lead to implausible estimates. To take care of these issues we analyze the CDS over

16 moving time windows as described in Section 2 by means of censored EVT. To this end,

Einmahl et al. (2008) provide several theoretical results with regard to the statistical analysis
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of randomly right-censored extreme value data. In their framework, the age at death of the

i-th individual is modeled via iid random variables Xi with distribution function FX . These

random variables may be independently right censored by censoring random variables Ci
iid∼ FC ,

where FC denotes their distribution function. Consequently, the observations in the dataset are

given by Zi = min(Xi, Ci) and a censoring indicator is given by δi = 1{Zi = Xi}. Let γ(·) and

xF(·)denote the EVI and the endpoint of the distribution function of X,C, and Z, respectively.

To answer the target questions on the maximum lifespan we need to determine γX and xFX based

on the available data. The classical EVT approaches from the previous subsection, however,

would only lead to reasonable estimates for γZ and xFZ (when only using the observations Zi).

On the other hand, a complete case analysis (when deleting all censored observations) would

generally result in estimates that are strongly biased. To address censoring adequately, Einmahl

et al. (2008) introduce estimators for γX and xFX which are valid in the following cases:





case 1: γX > 0, γC > 0

case 2: γX < 0, γC < 0, xFX = xFC

case 3: γX = γC = 0, xFX = xFC =∞.
(4)

With regard to the estimation of the maximal attainable age at death only the second case

corresponds to a finite right-endpoint. For the sake of generality we nevertheless also allow for

non-negative EVIs γX and γC .

In what follows, we consider intervals of nine adjacent calendar years for the time span 1980–2003.

Starting with 1980–1988 these windows are shifted by steps of one calendar year, see Table 1.

As the CDS records of death and censoring counts for the 16 time windows (see Table 1) do not

refuse the first two cases of Assumption (4) at first sight we presume that the methods of Einmahl

et al. (2008) are applicable to estimate the right endpoint of the deaths curve for each window.

The windows contain between about 300,000 and 500,000 (partially censored) observations. Since

this figure is still too large for most algorithms with respect to the computing time (even when

using modern computing clusters), we follow a sub-sampling approach: Let Zn := {Z1, ...Zn}
denote the CDS sample for one representative window. We then randomly draw m times from

Zn without replacement to construct a sub-sample of size m, where m < n. Independently

repeating this N times we obtain sub-samples Z im := {Zi
1, ..., Z

i
m}, 1 ≤ i ≤ N . We then estimate

the EVIs (of the given window) separately for each sub-sample. Following Politis et al. (1999)

we should choose m from a theoretical perspective such that m
n
→ 0 as m→∞. Moreover, the

size of the sub-samples m should be sufficiently large, such that each sub-sample includes IDL

data with a sufficiently high probability. Taking these issues as well as the computation time

into account we calculated estimates for m = 7500 and N ∈ {1000, 5000}. For the choice of

k we employ a cross-validation type procedure that is related to the Leave-One-Out method.

This allows for a more objective choice of the tuning parameter k, at least compared to the

rule of thumb approach from Section 3. To this end, we draw one more sub-sample Z0
m from
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Zn of length m that serves as a test sample. All other sub-samples Z im, 1 ≤ i ≤ N, serve as

training samples. For each of these sub-samples Z im, 0 ≤ i ≤ N, we estimate the EVI γ̂
(·)
X,i(ki)

and thereby vary the number of upper order statistics 1 ≤ ki ≤ m. To this end, we use the

methods described by Einmahl et al. (2008).

Figure 3: Different EVI estimates as a function of the number of upper order statistics k0 in
case of the trainings dataset of the first window between 1980 and 1988 from the CDS.

Figure 3 shows different EVI estimates k0 7→ γ̂
(·)
X,0(k0) for the test sample of the first interval

between 1980 and 1988 for N = 5000. Since there are several stable plateaus visible, it is not

clear where the upper order statistic should be chosen to get a good bias-variance tradeoff. We

therefore compare the EVI estimates for the test set k0 7→ γ̂
(·)
X,0(k0) with the corresponding EVI

estimates from each training set ki 7→ γ̂
(·)
X,i(ki). For each of these comparisons we obtain the

estimator

k̂0,i := argmin
1≤k0≤m

m∑

ki=1

k
5/4
i

(
γ̂
(·)
X,0(k0)− γ̂

(·)
X,i(ki)

)2
, 1 ≤ i ≤ N. (5)

This corresponds to the EVI estimate from the test set Z0
m that has the smallest penalized

quadratic distance from all EVI estimates of the ith trainings set Z im. The choice of the penalty

k
5/4
i reduces the influence of the bias since it supports intermediate values and penalizes larger

values of k (for which the bias is supposed to become too large). Now we can derive an estimator

for the EVI by taking the mean of all γ̂
(·)
X,0(k̂0,i), 1 ≤ i ≤ N , obtained from Equation (5):

γ̂
(·)
X,0 = N−1

N∑

i=1

γ̂
(·)
X,0(k̂0,i).

To estimate corresponding 95% confidence intervals of the form (γ̂L, γ̂U) we use the asymptotic

normality of the EVI estimators given in Einmahl et al. (2008). Proceeding in this way for
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all time windows we obtain the MLE- and Mom-based EVI estimates with corresponding

95%-confidence intervals stated in Table 3 (for N = 5000). Moreover, the limiting distribution

Mom MLE

window γ̂
(·)
n (k) (95% CI for γ) γ̂

(·)
n (k) (95% CI for γ)

1980-88 -0.14266 (-0.14307,-0.14226) -0.13500 (-0.13533,-0.13467)
1981-89 -0.14225 (-0.14266,-0.14183) -0.13827 (-0.14075,-0.13579)
1982-90 -0.15943 (-0.15973,-0.15913) -0.14813 (-0.14966,-0.14660)
1983-91 -0.15920 (-0.15954,-0.15886) -0.13979 (-0.14017,-0.13941)
1984-92 -0.13900 (-0.14761,-0.13038) -0.12407 (-0.12458,-0.12356)
1985-93 -0.13899 (-0.13956,-0.13843) -0.12448 (-0.12513,-0.12382)
1986-94 -0.14553 (-0.14596,-0.14511) -0.12650 (-0.12707,-0.12594)
1987-95 -0.14616 (-0.14663,-0.14569) -0.12669 (-0.12791,-0.12547)
1988-96 -0.15376 (-0.15430,-0.15322) -0.15025 (-0.15080,-0.14970)
1989-97 -0.15359 (-0.15585,-0.15134) -0.15062 (-0.15102,-0.15022)
1990-98 -0.14601 (-0.14819,-0.14383) -0.14717 (-0.14757,-0.14677)
1991-99 -0.14524 (-0.14564,-0.14484) -0.14676 (-0.14717,-0.14635)
1992-00 -0.15112 (-0.15162,-0.15061) -0.13735 (-0.13789,-0.13681)
1993-01 -0.13187 (-0.13607,-0.12768) -0.13764 (-0.14035,-0.13492)
1994-02 -0.15253 (-0.15318,-0.15188) -0.15808 (-0.15859,-0.15757)
1995-03 -0.14023 (-0.14231,-0.13815) -0.16646 (-0.16818,-0.16475)

Table 3: MLE- and Mom-estimates of the EVI (γ), upper order statistics k, and 95% confidence
intervals for the CDS for N = 5000.

of the EVI-estimators directly yields estimates for the right endpoint given any estimate for

the EVI. However, no mathematically sound confidence intervals for xF have been developed

so far. We therefore seize on the former suggestion that every EVI-estimate yields a right

endpoint estimate and proceed as follows: For the upper and lower limits γ̂
(·)
L and γ̂

(·)
U of the

95 % empirical confidence interval of γX,0 we calculate corresponding endpoint estimates, say

x̂
(·)
FX ,L

and x̂
(·)
FX ,U

, to obtain an (at least descriptive) confidence interval (x̂
(·)
FX ,L

, x̂
(·)
FX ,U

) for xF .

The results for N = 5000 are shown in Table 4 and discussed below.

5 Discussion of the CDS Results

In this section, we discuss our results and their plausibility. We start by describing the results

on the EVI given in Table 3 (the results for a subsample size of N = 1000 are in the same

range and thus not shown here). First, it is apparent that all EVI estimates are below zero for

every window. Moreover, even the upper bounds of their 95% confidence intervals are below

zero. Since this even holds after multiplicity adjustment for the type I error, e.g. using the

Bonferroni correction method (results not shown) (Bretz et al., 2016, Sec. 2), we can argue for

a significantly negative EVI (γFX < 0). This indicates the existence of a limit to the lifespan

of US females in every window; at least in this retrospective view. A similar investigation for
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the censored observations alone also indicated a significant negative γFC < 0 so that Case 2 of

Assumption (4) appears to be plausible. Accordingly, we are able to estimate the right endpoint

of the deaths curve as described in the former section.

Mom MLE
window x̂FX (95% approx. CI for x̂FX ) x̂FX (95% approx. CI for x̂FX )

1980-88 122.802 (120.240, 127.740) 125.409 (122.072, 129.602)
1981-89 122.898 (120.304, 127.801) 124.839 (122.642, 129.510)
1982-90 120.781 (117.280, 123.487) 122.880 (121.530, 124.833)
1983-91 120.732 (117.432, 123.566) 124.099 (123.995, 129.278)
1984-92 123.001 (120.793, 124.673) 126.510 (123.700, 130.830)
1985-93 122.871 (120.881, 125.343) 126.610 (123.661, 130.671)
1986-94 121.832 (118.322, 126.409) 126.310 (123.391, 127.733)
1987-95 121.661 (118.465, 126.420) 126.278 (123.533, 127.622)
1988-96 120.562 (119.143, 122.889) 121.897 (119.420, 125.152)
1989-97 120.797 (119.508, 122.043) 122.206 (119.408, 125.067)
1990-98 122.107 (119.987, 123.567) 122.380 (119.214, 124.939)
1991-99 122.186 (118.805, 126.413) 122.354 (119.232, 124.976)
1992-00 121.107 (118.078, 124.314) 123.482 (119.541, 128.454)
1993-01 123.489 (120.877, 125.906) 124.340 (119.267, 128.550)
1994-02 120.278 (118.502, 122.782) 120.704 (117.576, 124.642)
1995-03 122.478 (120.417, 124.407) 120.946 (119.382, 122.930)

Table 4: MLE- and Mom-estimates of the right endpoint (xFX ) and 95% approximate confidence
intervals for the CDS for N = 5000.

Table 4 shows these estimates together with their confidence intervals for both the maximum

likelihood and the moment estimator in case of N = 5000 subsamples (the results for N = 1000

are again almost equal and thus not shown). As we can see from this table, both right endpoint

estimates range between 120.278 and 126.610 over all time windows. Further, we cannot detect

any major trends in the results for the maximum likelihood estimator nor in those of the moment

estimator.

Moreover, the confidence intervals range between 117.280 and 130.830 with a maximum inter-

val length of 9.283 years (MLE estimation in the window between 1993 and 2001). For the

interpretation of these results, we recall from Section 2 that the IDL stopped collecting data

after 2003. Thus, the later time spans contain fewer IDL survival data which may lead to a

slight underestimation. Anyhow, the observed rather constant behavior of the deaths curve’s

right endpoint is in line with recent findings of Einmahl et al. (2019) who also did not find

’indications of trends in these upper limits over the last 30 years’ for Dutch residents based on

classical (non-censored) EVT.

As explained in Section 2.1, the oldest US female recorded in the IDL reached an age of 119

years and 97 days and she died in the year 1999. Though the lower bound of the confidence

intervals for some windows is lower than 119 years, the estimates for the right endpoint are

always larger. Since the HMD is regarded to be complete with respect the US population our
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results seem to be plausible.

Advantages of the CDS approach. We finally indicate the advantages of working with

the CDS. First, utilizing the HMD alone did not lead to reliable estimates (results shown in

Appendix A). In particular, in the analysis of the HMD alone we obtained EVT estimates

of the right endpoint that are below the age of 119 years. However, from the IDL we know

at least one proven case of a US female surviving the age of 119 (see Section 2.1). On the

other hand, we could infer more information from investigating the CDS than building on the

IDL alone: The evaluation of the deaths curve’s right endpoints in moving windows was not

possible on the IDL data alone due to too small sample sizes per window (see Table 1). We,

therefore, performed its EVT analysis for the whole time span 1980–2003 in Section 3 for which

the stated EVI confidence intervals even include the value of zero (see Table 2). However, the

existence of a finite lifespan could be accepted by means of the significantly larger CDS. Since

the latter database is larger (in particular it contains the IDL) and incorporates survival data,

the corresponding results from Table 3 are more reliable than the results for the IDL alone.

Setting the numbers into context. Comparing our results to previous findings in recent

literature is difficult because the basics (i.e. data and methods) differ considerably. In particular,

the present statistical analysis is the first that accounts for censoring of the underlying data

accordingly. Nevertheless, to at least associate the numbers with the context of a maximum

human lifespan we summarize some of the most recent results: Utilizing HMD data alone, de

Beer et al. (2017) find that the maximum human lifespan may increase to 125 years. Li et al.

(2011) estimate the maximum lifespan for Australians at 112.2 and at 109.43 for New Zealand

females and males, respectively. To this end, they use HMD data. Bravo and Corte-Real (2012)

also use HMD data and obtain similarly low estimates at 112.77 and 111.78 for Spanish and

Portuguese females, respectively. However, at least for Spain and Australia, we can find IDL

records for females dying at higher ages (both after their 114th birthday). Einmahl et al. (2019)

analyzed about 285,000 death counts of male and female Dutch residents during 1986–2015 (who

at least reached an age of 92) for single years (which makes the sample size for each estimation

even smaller) and found an average estimated upper endpoint at 115.7 years. Not only in

relation to our results, these figures seem to be exceptionally low. For instance, even more than

two decades ago, Aarsen and de Haan (1994) infer a 95% confidence interval for the Netherlands

between 113 and 124 years (based on about 20,000 combined observations from Dutch men

and women). More recently, Weon and Je (2009) obtain maximum age estimates around 126

years for Swedish females and Hanayama and Sibuya (2015) find estimates for the maximum

lifespan of Japanese at 123 years. For both analyses, HMD data is used. In contrast, Gbari

et al. (2017) use a country-specific database for Belgian citizens which includes 36,616 death

counts for females dying in the age range 95+ after 1981. Based on this data they quantify the

maximum attainable age of Belgian females between 120.3 and 122.73 years.
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Barbi et al. (2018) use data for Italian females to find decelerating death hazards at high ages and

conclude that there might be no limit to human longevity. In contrast to that, but in consensus

with the aforementioned researches, our estimates show that there is a limit to longevity (in

our case) for US females. However, compared to the latter, our results are in the upper range

of the results. These disparities in the results may also be caused by different sources of data,

differences between the populations under study, or the diversity of the employed methods. In

particular, the sample size of the data plays an important role in the quality of the results. In

this regard, the data we use outperforms the data from many previous researches (see Table 1).

Moreover, for example, the case of Jeanne Calment (see Robine and Allard, 1998) indicates that

it is possible to survive to ages beyond 120 years. In this spirit we consider our results to be

reasonable.

6 Conclusion and Outlook

The present paper investigates the question of quantifying the maximum human lifespan for

US females. To this end, we used two different sources of data: the International Database

on Longevity (IDL) and the Human Mortality Database (HMD). We discussed the specific

characteristics of each database and additionally exploited their advantages by constructing a

comprehensive combined data set, the CDS. These data include both death counts and censored

survival data. We then started our investigation of inferring the existence of a possibly finite

lifespan by means of extreme value theory (EVT). Starting with a classical EVT analysis of

the IDL alone, the hypothesis of an infinite lifespan could not be rejected. This is presumably

due to its rather small sample size of 309 for the analyzed time span 1980–2003. Moreover,

the obtained point estimates for the maximum attainable age fluctuated considerably and are

thus not very meaningful. To obtain more reliable results we subsequently analyzed the CDS

which we arranged into intersecting windows to study the evaluation of the lifespan over time.

Due to the involved censoring, we employed more convenient censored EVT methods from

Einmahl et al. (2008) which we equipped with a computationally efficient algorithm based on

sub-sampling and cross-validation.

Finally, we illustrated and discussed our results. For US females, we found significant evidence

for a finite lifespan in the combined data and obtained reliable point estimates for the maximum

attainable age for each window. These estimates vary between 120 and 127 years which appears

to be reasonable compared to existing results in the literature (particularly, the oldest US female

recorded in the IDL reached an age of more than 119 years).

Independently of our analysis, other authors like Einmahl et al. (2019) and Rootzén and Zholud

(2017) have been motivated to apply (uncensored) EVT methods on different datasets after

reading the nature paper by Dong et al. (2016). However, judging from our findings, we

recommend the application of censored EVT methods to other populations for future research;
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employing the idea of the current CDS: Whenever there is a comprehensive data set which

is right censored (as e.g. in the HMD) and a comparatively small but exact dataset (as e.g.

given by the IDL) on the same population this method can be used and benefits from much

larger and reliable data. In addition, for enhanced analysis additional research is needed from

a methodological point of view to construct asymptotically correct confidence limits for the

right endpoint, to develop Bayesian EVI estimate versions under censoring and to treat more

complicated censoring issues such as, e.g., interval-censored data for the Weibull model.
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Appendices

A Analysis of the HMD Data

The valuable information added to analysis by including the supercentenarians of the IDL

becomes apparent when considering the HMD in a stand-alone analysis. The HMD contains

single year and single age death counts and survivors up to the age of 109. However, the age

range 110+ only gives cumulative numbers, i.e. the total number of people alive / dying in

some age beyond 110. Thus, the HMD data is right censored.

The use of survival data of the HMD besides the death counts per calendar year and age, results

in a randomly right censored data set (as the age at death of the US females surviving a time

interval is unknown). Thus, in estimating the right endpoint of the deaths curve on only the

HMD data, we can proceed analogously to the methods of the main part of the article. This

results in the estimates of Table 5. For the sake of brevity and conciseness here we only illustrate

the results for the Moment estimator and for N = 5000. This table corresponds to the tables in

the main part of the article, where we illustrate our results for the CDS analysis. The estimates

window γ̂
(·)
n (k) (95% CI for γ) x̂FX (95% CI for x̂FX )

1980-1988 -0.182 (-0.18271,-0.18219) 118.501 (116.602,121.138)
1981-1989 -0.191 (-0.19116,-0.19006) 117.333 (116.177,119.231)
1982-1990 -0.188 (-0.18862,-0.18800) 117.876 (116.555,119.587)
1983-1991 -0.206 (-0.20624,-0.20548) 116.361 (115.567,117.716)
1984-1992 -0.215 (-0.21503,-0.21434) 115.672 (114.757,117.909)
1985-1993 -0.204 (-0.20478,-0.20323) 116.678 (115.112,119.085)
1986-1994 -0.210 (-0.21067,-0.20993) 115.748 (114.153,117.503)
1987-1995 -0.210 (-0.21040,-0.20962) 115.704 (115.011,118.413)
1988-1996 -0.205 (-0.20515,-0.20419) 115.963 (115.090,119.293)
1989-1997 -0.209 (-0.20979,-0.20876) 115.637 (114.947,117.192)
1990-1998 -0.216 (-0.21607,-0.21550) 115.264 (113.997,116.611)
1991-1999 -0.246 (-0.24668,-0.24594) 113.702 (112.969,114.008)
1992-2000 -0.230 (-0.23094,-0.22986) 114.125 (113.045,115.886)
1993-2001 -0.199 (-0.19895,-0.19806) 116.116 (115.237,117.096)
1994-2002 -0.188 (-0.18827,-0.18724) 117.163 (116.253,119.798)
1995-2003 -0.186 (-0.18648,-0.18570) 117.033 (115.429,118.539)

Table 5: Mom-estimates of the EVI (γ) and the right endpoint (xFX ) with 95% confidence
intervals for the HMD for N = 5000.

for the EVI in this application are thoroughly smaller than zero and even smaller than those

of the CDS analysis in the main part of the article. The upper bounds of the 95% confidence

intervals of these estimates are below zero in each window. This indicates the existence of a

finite right endpoint for the HMD data. In this respect, the HMD analysis does not differ from

the analysis of the CDS although the estimates here are considerably smaller.
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The estimates for the right endpoint on only the HMD data are also smaller than those of the

CDS analysis in each interval. Also the confidence intervals of this analysis are in lower age

ranges than those of the CDS analysis. For many windows they not even contain the age of 119,

while the confidence intervals for the right endpoint on the CDS data either contain this age

or go beyond. Taking into account, that there was a proven case of a US female dying in the

age of over 119 in 1999 (see discussion of the IDL data set in the main part of the article), the

results of the CDS analysis appear more plausible than those illustrated in Table 5.
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Abstract

A variety of mortality models can be used to project future mortality. However, the

parameters of most of these models lack a clear demographic interpretation. Hence, it

may be hard to identify forecasts which are not consistent to the most recent observed

trends in the mortality evolution or that are demographically implausible. On the other

hand, demographers make predictions on future mortality but typically focus on single

aspects only instead of comprehensive mortality forecasts. This article aims to close the

gap between these forecasting approaches.

We establish a new best estimate mortality model which is based on the extrapolation

of four statistics that have a clear demographic interpretation. The four statistics are

taken from the classification framework of Börger et al. (2018). Our model yields forecasts

for the deaths curve which are consistent with the most recent demographic trends in

the deaths curve evolution. Moreover, expert opinions on future trends in the mortality

evolution can easily be incorporated, and we illustrate how the model can be used for

scenario analyses.

Keywords: Mortality scenario classification, Demographic mortality trends, Demographic

scenario analyses, (consistent) Mortality forecasting
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1 Introduction

Estimates for future mortality are important in many areas, e.g. for projections of social security

systems or risk management in the private pension and life insurance sector. To derive such

estimates, a variety of mortality models has been developed most of which are statistical models

in the sense that they extract certain patterns from historical mortality data and extrapolate

those patterns into the future.

Some of the earliest mortality models (which are also called ”laws of mortality”) are quite

simple, as they are based on only few parameters. One of the first models in this spirit is the law

of mortality by Gompertz (1825). This model has often been extended. For example, Pollard

(1987) gives a comprehensive review on mortality models which have been developed from the

19th century until the 1980s. Such models have often been used for deterministic mortality

forecasts. During the most recent decades, stochastic mortality models have emerged, e.g. the

Lee-Carter model (Lee and Carter, 1992) or the Cairns-Blake-Dowd model (Cairns et al., 2006).

An overview is given for example by Booth and Tickle (2008) or (with a more actuarial focus) in

Cairns et al. (2008). While the majority of the early ”laws of mortality” only take into account

age-dependent patterns of mortality, some of the more recent models also allow for period and

even cohort effects. This allows for model fitting to longer data series and in particular for more

flexible (e.g. stochastic) extrapolations.

However, in many cases, the parameters in these models lack a clear demographic interpretation.

Therefore, it is not easy for the user of the model to assess if an extrapolation of these parameters

will result in plausible mortality forecasts from a demographic point of view. We will provide

examples for that later on.

In the literature we also find many approaches for forecasting (certain aspects of) future mortality

from a demographic point of view. For example, Manton et al. (1991) divide the perspectives

on the future life expectancy in three groups - the ”traditional”, the ”visionary”, and the

”empiric” perspective - and give examples for each perspective. Olshansky et al. (1990) take the

”traditional” point of view by suggesting that there might be a limit to the increase in human

longevity. More than one decade later, Oeppen and Vaupel (2002) analyzed the world record life

expectancy and found a linearly increasing trend which they extrapolate several decades into the

future. In the spirit of Manton et al. (1991) this is rather a ”visionary” perspective. Sometimes

demographic forecasts are also made implicitly (i.e. without an explicit extrapolation of any

statistic). For example, Dong et al. (2016) ”strongly suggest that the maximum lifespan of

humans is fixed” and build their claim on historical trends in demographic statistics measuring

the evolution of old-age mortality. In the same spirit, but more than three decades earlier Fries

(1980) derived future limits for the maximum human lifespan based on demographic statistics.

So demographers typically do not only use statistical observations (which are often the only

input for the statistical mortality modeling), but also combine knowledge from biology, medicine,

sociology, and other fields of research in their forecast. However, their forecasts often focus on
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single aspects of the mortality evolution only, e.g. the life expectancy at birth or the maximum

human lifespan, and they typically do not make suggestions for the entire distribution of deaths

over all ages in any future year. The latter, however, is provided by mortality models (but

typically without taking demographers’ forecasts into account). Therefore, it seems worthwhile

to combine the purely statistical approach of mortality modeling with the demographic expertise.

This paper aims to close this gap. To this end, we propose a methodology that can derive the

entire mortality distribution for any future point in time based on forecasts for a set of statistics

that come with a clear demographic interpretation.

We build our methodology on recent work of Börger et al. (2018). They introduce a new

classification framework for (observed historic) changes in mortality over time which is based on

the deaths curve, i.e. the density function of the age at death. They show that four statistics,

each with a clear demographic interpretation, describe the key structural elements of a deaths

curve - its support and the pattern it exhibits on this support. Thus, they express changes in a

deaths curve between two points in time by changes in these four statistics. In their classification

framework, a uniquely defined ”mortality scenario” is then assigned to every possible evolution

of a deaths curve over time. Such a scenario consists of four components and each component

has one of three specifications: It can 1) be ”right-shifting” or ”left-shifting” (or neutral in

respect of ”shifting mortality”), it can 2) exhibit ”extension” or ”compression” (or be neutral in

this dimension), it can 3) show signs of ”compression” or ”decompression” (or be neutral in

that respect), and it can 4) show ”concentration” or ”diffusion” (or again be neutral in that

respect). In Section 2.1 we will explain this in more detail.

This classification framework allows us to check if any given mortality forecast is consistent with

most recent demographic trends. A mortality forecast can be considered demographically reason-

able in case the historical patterns in the four statistics are extrapolated in a demographically

plausible manner.

The other way round, it can also serve as a basis to create mortality forecasts for the whole

deaths curve that match a given forecast for the four statistics from the classification framework.

Such a forecast can either be an extrapolation of the four statistics based on their past evolution

or a forecast based on demographic insights (or a combination thereof, e.g. an extrapolation

that is adjusted based on demographic insights). This results in a new type of mortality model

which will be derived in this paper.

The remainder of this paper is organized as follows: In Section 2 we briefly summarize the

classification framework of Börger et al. (2018) and test frequently used mortality forecasting

models for consistency with the past in terms of their projection of the four key statistics. This

illustrates the need for mortality forecasts with better consistency to recently observed mortality

scenarios. Consequently, in Section 3 we introduce a deterministic mortality forecasting model,

which is based on the four components of the aforementioned classification framework. This

model uses forecasts for the four statistics (e.g. extrapolation of recent trends or some expert

opinion) to project the entire deaths curve and thus allows for consistency of the mortality
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forecasts with recently observed mortality scenarios and/or the experts’ expectations. In Section

4 we discuss examples and potential applications for this model. Finally, Section 5 concludes.

2 Consistency of Existing Mortality Models

2.1 A Unique Classification Framework for Mortality Evolution Pat-

terns

This section briefly summarizes the classification framework introduced by Börger et al. (2018).

They uniquely assign a mortality scenario to any change of a deaths curve between two points

in time. More concretely, a mortality scenario is defined as a four dimensional vector with the

following components:

1. Right- or left-shifting mortality is linked to an increase or decrease in the modal age at

death (M). This statistic is defined as the age in which most people die, i.e. the maximum

of the deaths curve. Thus M can intuitively be interpreted as the position of the center of

the deaths curve. So shifting mortality is linked to a shift of the deaths curve’s center to

the right or to the left, respectively.1

2. Extension or contraction is linked to an increase or decrease of the upper bound of the deaths

curve’s support (UB). This statistic is defined as the right endpoint of the deaths curve’s

support.2 Intuitively it is the highest age that has been reached within the population of

interest. Whenever this age moves to the right, the support of the deaths curve extends

and whenever UB moves to the left the deaths curve’s support contracts. Like the modal

age at death, UB indicates changes in the deaths curve’s position.

3. Compression or decompression is linked to an increase or a decrease of the degree of

inequality (DoI). This statistic measures the size of the area between the observed deaths

curve and a hypothetical deaths curve where the age at death is uniformly distributed.

Intuitively this area (and hence the inequality of the distribution of deaths by age) will

increase, if the observed deaths curve moves farther away from the uniformly distributed

deaths curve. Consequently, there must be age segments, where the number of deaths

increases, i.e. deaths become more compressed. If the observed deaths curve moves closer

towards this uniform distribution, the area between these two curves will decrease and

hence we observe decompression.

1Börger et al. (2018) noted that the ”peak might not be unique in only rather theoretical scenarios [...]. In
such a case, one might use a suitable alternative to M or modify the framework to include additional statistics.”

2In the literature we find an extensive discussion about the existence of this age. For example Gampe (2010)
or more recently Barbi et al. (2018) find evidence for a plateau in the mortality hazard after an age beyond 100.
In contrast, for example Gavrilov and Gavrilova (2011) find that this is an artefact. By use of methods from
extreme value theory for example Feifel et al. (2018) found significant statistical evidence for the existence of a
finite lifespan for US females. Thus, like Börger et al. (2018) we assume that the right endpoint of the deaths
curve’s support always exists.
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4. Concentration or diffusion is linked to an increase or decrease in the number of deaths in

the modal age at death (d(M)). This statistic measures the deaths curve’s value at age M .

If more/less people die at the ages around M , d(M) will increase/decrease. Intuitively

this statistic indicates the relative importance of the ages around M compared to the rest

of the deaths curve. Like DoI, d(M) indicates changes in the deaths curve’s shape.

Each component of this vector can also assume the value neutral, which is the case if the

respective statistic neither (significantly) increases nor decreases between two points in time.

This results in a total of 34 = 81 possible different scenarios, some of which might not be relevant

in practice. It is noteworthy though that any material change of the deaths curve is detected by

at least one of the components. Börger et al. (2018) consider a scenario to be a pure scenario if

only one of four components is different from neutral. If at least two components indicate a

change, a mixed scenario prevails. They find that in practice, mixed scenarios are the rule rather

than the exception (see also Genz, 2017) and conclude that the presence of mixed scenarios is

not considered sufficiently in the literature.

This classification framework for observed changes of the deaths curve can be applied to deaths

curves with any starting age x0. For example, if one is interested in the evolution of old-age

mortality, x0 should be a rather old age and the deaths curve gives the age distribution at death

conditional on survival to this (old) age.

We would like to emphasize once again that each of the aforementioned statistics has an intuitive

interpretation. So either an extrapolation of past trends or an expert opinion on the future

development can be used in forecasting. Also, it can be relatively easily assessed whether a

simple statistical extrapolation of a past trend is (demographically) reasonable or not. This

is much more difficult in models that are based on an extrapolation of statistics which do

not allow for an intuitive interpretation. While an intuitive interpretation is not necessary for

extrapolations of past trends, it is of course very helpful in case of extrapolations based on

expert opinion.

An extrapolation of past trends can be based on the methodology that was developed by Börger

et al. (2018) to determine (piecewise linear) trends in each of the four statistics in the past.

In order to illustrate this concept, we use data from the Human Mortality Database (HMD,

2015) for Swiss females and determine the deaths curve for each calendar year between 1920

and 2014 and starting age x0 = 60. For each calendar year, we estimate the four statistics

of the classification framework and fit piecewise linear trends to the resulting time series (see

Figure 1).3 For the extrapolation performed in this paper, the slope of most recent trend line is

relevant, whereas for the classification in Börger et al. (2018), the sign of the trend was more

3Between any two trends, Börger et al. (2018) allow for jumps, which can be important whenever a time
series has sudden changes in its level. In Figure 1 we can see an example for such a jump in UB.
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relevant.4

Figure 1: Observed trends in the four statistics of the classification framework for Swiss females
between 1920 and 2014; top-left: M , top-right: UB, bottom-left: DoI, bottom-right: d(M)

2.2 Consistency Issues in Existing Forecasting Models

In this subsection, we check the demographic consistency of mortality forecasts. We fit two

well-established mortality forecasting models (the Lee-Carter model (LC) and the Cairns-Blake-

Dowd model (CBD)) to the mortality data from the previous subsection. From Figure 1 we

can see, that the most recent trend change occurred in 1992 for M , in 1976 for UB, in 1963 for

DoI, and in 1986 for d(M). Since all statistics exhibit stable trends from 1992 onward, we fit

both mortality models to data between 1992 and 2014 and for ages above 60. This gives both

4Hence, they developed a test whether any trend is significantly different from neutral (i.e. the slope of
the line fitted to the time series is significantly different from zero). For any calendar year, each of the four
components can then be classified as increasing, decreasing, or neutral. The resulting four-dimensional vector is
the mortality scenario for this calendar year.
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models the best possible chance to extrapolate historical trends in a demographically reasonable

manner.5

Figure 2 shows the observed values of each statistic of the classification framework between

1992 and 2014 as well as extrapolated linear trends and the values forecast with the LC and the

CBD model from 2015 to 2070.6

Figure 2: Observed values (black dots) between 1992 and 2014, extrapolated trends (blue lines),
and model forecasts of the LC (green line) and the CBD model (red line) from 2015 to 2070;
top-left: M ; top-right: UB; bottom-left: DoI; bottom-right: d(M)

Three of the four statistics exhibit significant jumps at the transition from the calibration to the

forecasting period in both mortality models. This indicates that the extrapolated deaths curves

5When determining the calibration period for mortality models which do not allow for trend changes, the
mortality evolution during the calibration period should not exhibit any trend change. Thus for such models the
most recent trend change in the classification framework of Börger et al. (2018) provides a suitable criterion for
the choice of the calibration period.

6To calibrate the parameters of both models we use the R package StMoMo (see Villegas et al., 2018).
This package also gives best estimate forecasts from which we determine estimates of the four statistics of the
classification framework. The kinks in the forecast values for UB, DoI, and d(M) stem from a discretization
issue which is due to the fact that the models only provide mortality rates for integer ages. We ignore this minor
issue since it does not affect the interpretation of the graphs.
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do not exhibit smooth changes at this transition, i.e. they are not consistent with the immediate

past. Thus, for both mortality models, the forecast deaths curves appear to be implausible from

a demographic point of view even for the immediate future.

The projection of M on the other hand seems more plausible than those for the other three

statistics since the transition from the calibration to the forecasting period does not exhibit a

jump.

3 A New Best Estimate Mortality Model

In this section, we present a deterministic mortality forecasting model which can yield deaths

curves that are consistent with a specific given forecast for the four statistics defined in Section

2.1. In particular, consistency with the most recent evolution of the deaths curve can be ensured

by extrapolating the most recent trends in the four statistics.

3.1 Theoretical Concept

Our mortality model forecasts (continuous) deaths curves which – if scaled such that it integrates

to one – can be interpreted as the density function of the age distribution at death. From these

deaths curves basically all other mortality statistics and in particular age dependent mortality

rates can be deduced.

In order to develop the theoretical concept behind our model, we first assume that a forecast

(Mt, UBt, DoIt, d(M)t) of the four statistics for any year t of the forecasting period is given.

We then denote the space of all density functions on the (age) interval [x0, UBt] which are

differentiable at least three times by Dt,x0 . It contains all functions dt : [x0, UBt]→ [0, 1] that

fulfill the following two properties:

∫ UBt

x0

dt(x)dx = 1 (1)

and

dt(x) ≥ 0 for all x ∈ [x0, UBt]. (2)

In order to restrict that space to deaths curves with ”typical” shapes, we demand the following

additional properties:

The deaths curve assumes the value of zero only at UBt:
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dt(x)




> 0 for all x ∈ [x0, UBt)

= 0, x = UBt

. (3)

For a sufficiently large x0, the deaths curve is unimodal, i.e. it has a unique global

maximum which is also the only local maximum.7 Consequently, we get:

d′t(x)




> 0 for all x ∈ (x0,Mt)

< 0 for all x ∈ (Mt, UBt)
. (4)

For a sufficiently small choice of x0, a typical deaths curve has two (unknown) inflection

points, one between x0 and Mt and one between Mt and UBt.
8 Further, the deaths

curve is concave between the inflection points and convex in both tails. Accordingly,

the second derivative is positive in x0 and UBt, and negative in Mt:

d′′t (x0) > 0,

d′′t (Mt) < 0,

d′′t (UBt) > 0, and

d′′′t (x)




< 0 for all x ∈ [x0,Mt)

> 0 for all x ∈ (Mt, UBt]
.

(5)

We denote by Dt,x0 the subset of Dt,x0 which contains all deaths curves that fulfill these

constraints. It is the set of ”density functions with reasonable shape”.

In the practical application of this model there might be further requirements the deaths curve

should fulfill to be plausible. Therefore the set Dt,x0 further can be restricted. In particular, for

more stable results in the left tail, it is advisable to specify the number of deaths in the starting

age d(x0). This is:

7Besides the expected maximum at M , local maxima can typically be observed at age 0 (infant mortality)
and at the peak of the so-called accident hump (typically at some age between 18 and 25). Thus, for example a
choice of x0 = 30 would be sufficiently large in any relevant case. In this sense, this is not a limitation if one is
interested in mature- and old-age mortality.

8If the distance between x0 and M becomes too small, it may happen that the deaths curve is concave at x0

and there is no inflection point between x0 and Mt. In practical applications, however, this is irrelevant unless
an x0 is chosen that is very close to the initial value of M and/or a strongly decreasing trend for M is assumed.
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Given a forecast for the number of deaths at the starting age at time t, d(x0)t, it must

hold:

dt(x0) = d(x0)t (6)

for pre-specified values d(x0)t.

Since typically, the logarithm of the number of deaths at the starting age log d(x0) follows a

piecewise linear trend, we linearly extrapolate the most recent trend of this statistic in order to

get reasonable and demographically consistent forecasts for d(x0)t at any future year t.

In the last step, we consider the subset Dt,x0 ⊂ Dt,x0 containing only deaths curves which

also match the forecasts of the statistics (Mt, UBt, DoIt, d(M)t), i.e. for each element dt :

[x0, UBt]→ [0, 1] of Dt,x0 it must hold:9

arg max dt(x) = Mt, (7)

sup
x>x0

(dt(x) > 0) = UBt, (8)

UBt − x0
2 · (UBt − x0)− 1

·
∫ UBt

x=x0

∣∣∣∣dt(x)− 1

UBt − x0

∣∣∣∣ dx = DoIt, and (9)

max
x≥x0

(dt(x)) = d(M)t. (10)

Of course, the set Dt,x0 might be empty or there might be more than one curve in this set. In

case this set is empty, we follow that the (long-term) extrapolations of the statistics are not

plausible.10 In case there is more than one deaths curve in the set Dt,x0 , a criterion is required

to determine which deaths curve should serve as a forecast at time t. We discuss concrete

examples for that in the next subsection.

The constraints from the Equations 1, 2, and 7 to 10 are mandatory for our model. A curve

which does not fulfill all these constraints is either no deaths curve at all (if Equations 1 and/or

2 are not fulfilled) or not consistent with the forecasts of the future mortality scenarios (i.e.

9Börger et al. (2018) propose discrete estimators for the four statistics. Since we are in a continuous setting
we had to adjust the estimators accordingly.

10Alternatively, this could also mean that the shape requirements (Equations 3 to 6) are too restrictive, i.e. a
deaths curve that we regard as implausible from today’s point of view because it violates one of these equations
should nevertheless be considered feasible at a (probably far away) future point of time.
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at least one of the Equations 7 to 10 is not fulfilled). The constraints from Equations 3 to 6

are helpful in choosing a plausible deaths curve but not necessary for an extrapolation of the

deaths curve. In this sense these requirements can be extended or relaxed depending on the

application of the model, the question at hand, or the user’s view on what a plausible deaths

curve should look like.

3.2 Basic Idea of Practical Implementation

In the previous subsection we have introduced the theoretical concept of our new model.

Now we explain how it can be implemented in order to derive concrete mortality forecasts

(i.e. for computing deaths curves for future years t, starting age x0, and statistics’ forecasts

(Mt, UBt, DoIt, d(M)t)). First we need to specify a functional representation of the elements of

the set of ”typically shaped” deaths curves Dt,x0 . The functional representation needs to be

chosen carefully since a restrictive and inflexible representation can imply that the set Dt,x0

becomes empty too easily. This would for instance be the case if one considered only those

deaths curve which correspond to a mortality curve according to the Gompertz law (Gompertz,

1825). In this case all deaths curves would be determined by only two parameters which makes

it impossible in general to find deaths curves which fulfill Equations 7 to 10 simultaneously.

Therefore, it appears more reasonable to use non-parametric representations, e.g. based on

splines. In this case, the number and the degree of the splines as well as their positions obviously

have an impact on whether the set Dt,x0 is empty or not. Here, a reasonable trade-off between

tractability of the representation and variability in the deaths curves it can generate is necessary.

For the example applications in the subsequent section, we use a set of 21 B-Splines of polynomial

degree five for the deaths curve representation. While the high polynomial degree ensures a

reasonable degree of smoothness of the deaths curves, the large number of splines allows for

sufficient flexibility in the deaths curves. This representation clearly outperforms the common

parametric deaths or mortality curve representations in terms of flexibility in the generated

deaths curves. In Appendix A we provide details on the spline representation and its estimation

in forecasting future deaths curves.

Based on this representation we can determine whether the set Dt,x0 is empty. In this case

there is no reasonably shaped deaths curve for the year t. In the other case it usually contains

infinitely many feasible deaths curves which differ only very slightly since they coincide with

respect to the four statistics form Section 2.1. In order to determine a unique mortality forecast,

one of the following criteria could be applied to pick a single deaths curve from Dt,x0 :

• Smoothness of the deaths curve: One may pick the deaths curve from Dt,x0 which leads to

maximal smoothness according to some smoothness measure.

• Minimum deaths curve changes over time: One may choose the deaths curve which is

”most similar” to a previous deaths curve. The similarity can be determined by any
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distance measure.

In our algorithm we implicitly use the criterion of minimum deaths curve changes over time and

choose the deaths curve with minimal distance to the deaths curve of the last year where we

have observed data, i.e. the last year before the projection starts (see Appendix A for more

details).

4 Applications of the New Model

In this section we apply the model to the data that had also been used in Section 2, i.e. Swiss

females with starting age 60. For the first example, we extrapolate the most recent linear trends

for each of the four statistics to the years between 2015 and 2070 and for each calendar year fit

a deaths curve to the extrapolated statistics.

Figure 3: Deaths curves for Swiss females in the years 1990, 2000, 2010 (observed, dashed lines)
and 2020, 2030, 2040, 2050, 2060, and 2070 (forecast with linear extrapolation of most recent
trends, solid lines).

Figure 3 shows nine deaths curves for Swiss females between 1990 and 2070. Both for the

historical deaths curves and for the extrapolated deaths curves we observe right-shifting mortality

as the peaks of the deaths curves move more and more to the right. At the same time the upper

bounds of the deaths curve’s support also move to the right indicating extension. Also, the

deaths curves from Figure 3 become more and more compressed between 1990 and 2070 since

the extrapolation yields an increasing DoI implying compression. Finally, the number of deaths
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in the modal age at death d(M) increases over time as the peak of the deaths curves in this

figure becomes ever higher.

It is particularly noteworthy that the forecast deaths curves between 2020 and 2070 smoothly

continue the historical changes of the deaths curve between 1990 and 2010. The four trends

(right-shifting mortality, extension, compression, concentration) are neither accelerated nor

decelerated at or after the transition from the calibration to the forecasting period. Hence the

mortality forecasts are consistent with the most recent observed demographic trends.

Of course, this new mortality model by definition extrapolates the four statistics it is based on

in a reasonable manner. For the whole curve to be considered a reasonable forecast, also other

quantities like probabilities of death should be plausibly forecast. Figure 4 shows forecasting

results for log qt(x) for selected ages from 60 to 100. We can see that these are reasonably

extrapolated to the future.11

Figure 4: Logarithm of the probability of death for the ages x = 60, 70, 80, 90, and 100 between
1990 and 2014 (observed values) and between 2015 and 2070 (forecast values).

The demographic literature on mortality scenarios contains many different statistics which are

designed to measure changes in the age distribution of deaths over time. In order to test our

model for consistency also in terms of such other statistics we analyze their evolution between

1990 and 2070 (where from 2015 to 2070 we calculated the statistics based on our forecasts).

As examples we considered the remaining period life expectancy at different ages (e(60) in

11We have performed similar analyses also for the force of mortality and the probability of survival. All were
plausible. For the sake of brevity, we omit details.
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particular), statistics of the C-family (C50 in particular; see Kannisto, 2000), the Inter-Quartile

Range (IQR; see Wilmoth and Horiuchi, 1999), graphical measures like the Moving Rectangle

(MR; see Wilmoth and Horiuchi, 1999), and the standard deviation of the age distribution at

death above the modal age at death (SD(M+); see e.g. Kannisto, 2001).

Figure 5: Alternative statistics between 1990 and 2014 (observed values) and between 2015 and
2070 (forecast values)

In Figures 5 (IQR, C50, MR, and SD(M+)) and 7 (e(60) given by the black line) we illustrate

some examples. Here we can see that the most recent trends in these statistics are reasonably
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extrapolated until 2070.12

Since the four statistics used in our model allow for an intuitive interpretation, one might

be interested in analyzing the effects resulting from the individual scenario components. For

example the development displayed in Figure 3 is a ”mixed scenario”, where all four statistics

of the classification framework of Börger et al. (2018) increase over time. We simultaneously

observe right-shifting mortality, extension, compression, and concentration. In order to quantify

the impact of each of the four scenario components separately, we consider so-called ”pure

scenarios” in which only one statistic changes with time (and the others remain constant).

Figure 6 displays deaths curves for each pure scenario in 2014 and the last future year where we

still have reasonable deaths curves. Only in the pure right-shifting scenario we obtain deaths

curves with reasonable shape until 2070. For all other scenarios the deaths curves’ shapes in the

pure scenarios become deformed such that before 2070 Equations 3 to 6 from Section 3.1 can

not be fulfilled anymore. This is further evidence for the observation in Börger et al. (2018):

pure scenarios may occur for a certain period of time, but, over a longer time period, typically

only mixed scenarios can prevail.

Figure 7 shows the development of e(60) in each of the pure scenarios as well as in the mixed

scenario. In each pure scenario, the increase of the forecasts of e(60) is slower than in the mixed

scenario. The increase in e(60) in the pure right-shifting scenario is faster than in any other pure

scenario. This is an indication that in this example, the process of right-shifting mortality has a

stronger impact on the increase of life expectancy at age 60 compared to the effects resulting

from extension or compression.

As an alternative to the straightforward extrapolation of historic trends, the trends can easily

be altered in our model. If, e.g., one has reason to believe that the trend in one or more of the

four components will change at some point in time, one could either stop, intensify, reduce, or

even reverse the increase / decrease in these components at one or more arbitrary points in time.

Thus this model also allows for ”what-if-analyses” for virtually any change of the mortality

evolution in the future based on specifications of the four statistics. As an example for such

an analysis, we use the base scenario from Figure 3 but double the intensity of right-shifting

mortality and extension in 2015. Demographically this expert scenario means that the position

of the deaths curve will change twice as fast in the future than recently observed, while trends

in the deaths curve’s shape remain unaltered. In this sense, this scenario is a stress scenario

12In total we considered 16 different statistics on the deaths curve: C10, C50, and C90 from the so-called
C-family (see Kannisto, 2000), the remaining life expectancy at the ages 60, 70, 80, 90, and 100, the Fixed and
Moving Rectangle, the Fastest Decline, the Sharpest Corner, the Quickest Plateau, as well as the Inter-Quartile
Range (see Wilmoth and Horiuchi, 1999), the Prolate Index (see Eakin and Witten, 1995), and the standard
deviation above the modal age at death (see Kannisto, 2001). We have obtained plausible results also for the
statistics that are omitted in the figures for the sake of brevity.
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Figure 6: Observed deaths curve from 2014 and forecast deaths curve in each pure scenario; top-
left: pure right-shifting scenario in 2070, top-right: pure extension scenario in 2052, bottom-left:
pure compression scenario in 2048, bottom-right: pure concentration scenario in 2031.

for changes in the deaths curve’s position.13 Note that for this scenario we obtain reasonable

deaths curves until 2070. Also, in this scenario, the cohort life expectancy of a 60-year old Swiss

female in 2015 (i.e. with year of birth 1954) would increase from 30.4 years to 32.1 years which

is an increase of more than 5.4%.

5 Conclusion

This paper discusses the plausibility of mortality forecasts from a demographic perspective. In

particular, trends in key demographic figures should be reasonably extrapolated into the future.

13It is noteworthy that such a stress scenario is not implausible. The observed trends for M and UB in Figure
1 have also exhibited strong changes in the past: While M increased by 0.21 years per calendar year between
1966 and 1992, its increase was only 0.12 years per calendar year thereafter. For UB we historically observed a
stronger increase (0.09 years per calendar year from 1920 to 1976) than in the most recent period of stable trend
(0.06 years per calendar year between 1976 and 2014).
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Figure 7: Observed and forecasted period life expectancy at starting age 60 in five different
scenarios: mixed, pure right-shifting, pure extension, pure compression, and pure concentration
scenario.

For purely statistical projection models whose parameters lack a clear demographic interpretation

this is often not the case, and we provide examples for this. We apply the well-known models of

Lee and Carter (LC) and Cairns, Blake, and Dowd (CBD) and analyze the resulting deaths

curves in the classification framework of Börger et al. (2018). Here, deaths curves are classified

based on four statistics which all have an intuitive demographic interpretation: the modal age

at death M , the upper bound of the deaths curve’s support UB, the degree of inequality DoI,

and the number of deaths in the modal age at death d(M). We find that both, the LC and the

CBD model do not adequately extrapolate most recent historical trends in the four statistics. In

most cases, we find jumps in the statistics at the transition from the historical to the forecast

data in particular.

However, the classification framework of Börger et al. (2018) can not only be applied in order to

analyze the demographic plausibility of existing mortality projections. Since in the framework

two deaths curves are significantly different if and only if at least one of the four statistics

differs, the framework can also be the basis for a projection model. Projections of future deaths

curves (and thus essentially also any other mortality related quantity) can be derived from

extrapolations of the four statistics. This ensures by construction that the mortality forecasts

from this model are plausible from a demographic perspective. For the extrapolation of the

statistics one may rely on their most recent observed trends or on experts’ opinions on how

the statistics may evolve in the future. Suitable additional constraints on the shape of forecast

deaths curve need to be specified in order to ensure that the forecast deaths curves maintain a

reasonable shape, and we show how this can be done in practice. We also provide a concrete
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example forecast for Swiss females and illustrate its demographic plausibility by analyzing the

evolution of additional statistics like the IQR over time.

The proposed projection model also allows for informative sensitivity analyses based on scenarios

with a clear demographic interpretation. As (rather theoretical) examples, we consider the pure

mortality scenarios in which only one of the four statistics evolves as in the most recent data and

the other three statistics remain constant in the future. We find that such pure scenarios can

only prevail for a certain period of time before the deaths curve’s shape becomes implausible.

As a possibly more realistic scenario, we also consider a 100% increase in the trends in M and

UB compared to most recent historical trends (indicating increased right-shifting and extension

of mortality). Here the remaining cohort life expectancy of 60-year olds increases by more than

5%. Such a scenario would be particularly critical from an annuity provider’s perspective as the

cohort life expectancy can be interpreted as an annuity present value with discount rate zero.

Thus, the proposed projection model can be a useful risk management tool for quantifying the

impact of demographic trends and its potential changes on the liabilities.

Furthermore, the proposed projection model can be a helpful addition to the toolkit of mortality

projection models with respect to quantifying model risk as its structure and its forecasting

approach are fundamentally different from those in established (statistical) models like the LC

or the CBD model.
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Appendices

A Aspects of the Practical Implementation of the Model

A.1 Deaths curve representation by B-splines

For the examples in this paper we use a B-Spline representation for the deaths curve (Schoenberg,

1946). The deaths curve in any year t is described as a linear combination of 21 polynomial

spline functions b
(j)
t (x), j ∈ {1, ..., 21} of degree five:

d̂t(x) =
21∑

j=1

a
(j)
t · b(j)t (x) = Bt(x) ∗ at, (11)

where at = (a
(1)
t , ..., a

(21)
t )T is the vector of spline weights and the vector-valued function

Bt : R → R21 gives the value of each spline at any age x ∈ [x0, UBt]. Each spline b
(j)
t (x)

is centered at its so-called knot k
(j)
t , j ∈ {1, ..., 21} and, since the polynomial degree is odd,

symmetric around its knot. Furthermore, it is different from zero only on a certain interval:

b
(j)
t (x)




> 0 for all x ∈ (max

{
x0, k

(j−3)
t

}
,min

{
UBt, k

(j+3)
t

}
)

= 0 for all x /∈ (max
{
x0, k

(j−3)
t

}
,min

{
UBt, k

(j+3)
t

}
)

. (12)

In our forecasting model, deaths curves and thus also the spline functions need to be continuously

differentiable at least three times (see Section 3.1), but differentiability in higher order is desirable.

The polynomial degree of five therefore is a reasonable choice in our examples, but may of course

be altered for other applications of the model.14

The number of splines essentially determines the flexibility of the deaths curve representation.

The larger the number of splines, the more likely we are to find a deaths curve which matches

a concrete forecast for the four statistics Mt, UBt, DoIt, and d(M)t. The specific number of

21 splines is a result of the chosen positioning of the spline knots within the interval [x0, UBt]

(see below). We found that a number in that range is necessary to have a sufficiently flexible

representation. Note that we fix the number of splines independently of the length of the deaths

curve’s support. Thus in case of extension or contraction (i.e. when UB increases or decreases),

we reposition the spline knots over time, but do not change the number of splines.

In order to specify a concrete spline representation of a deaths curve, the spline knot positions

k
(j)
t , j ∈ {1, ..., 21} and the spline weights at = (a

(1)
t , ..., a

(21)
t )T need to be determined such that

Equations 1 to 10 are fulfilled. In what follows, we explain these two steps in more detail.

14We also considered the more commonly applied third degree polynomials, but found that deaths curves can
become slightly ”wavy”.
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A.2 Positioning of spline knots

Given a forecast of the four statistics (Mt, UBt, DoIt, d(M)t) for any year t, we determine the

positions of the spline knots as follows: First, we set one knot at each endpoint of the deaths

curve’s support, i.e. at x0 and at UBt, and at the modal age at death Mt. Between x0 and Mt

we add nine equidistant knots and between Mt and UBt we add five equidistant knots.15 For

sufficient flexibility also at the boundaries of the deaths curve’s support we need two additional

knots left of x0 and right of UBt. These knots are positioned such that all knots left or right of

Mt, respectively, are equidistant. Thus, the total number of splines is 3 + 9 + 5 + 2 · 2 = 21.

Figure 8 illustrates the 21 splines before weighting (see next paragraph) and their knot positions.

The two splines at each boundary whose maxima are not yet visible have their knots outside

the support [x0, UBt].

Figure 8: Knots and polynomial functions of degree five for 21 splines.

A.3 Determination of spline weights

Now, the spline weights need to be chosen for any future year t such that the resulting linear

combination of the 21 polynomial spline functions (see Equation 11) results in a deaths curve

that matches the given four statistics (Mt, UBt, DoIt, d(M)t). For the determination of the

vector of spline weights at we use numerical methods: For any t the Equations 1 and 6 to 10

from Section 3.1 can be translated into a system of non-linear, but convex equalities:

A
(1)
t (at) = y

(1)
t , (13)

where A
(1)
t : R21 → R6 is a corresponding function in the spline weights and y

(1)
t is a vector of

the target values. Analogously, the Equations 2 to 5 from Section 3.1 define a system of linear

15It might be reasonable to modify the respective number of knots (nine or five) if the distances between x0

and Mt or between Mt and UBt are rather small or extremely large.
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(and thus also convex) inequalities:

A
(2)
t ∗ at < y

(2)
t . (14)

These constraints are continuous in the sense that they refer to each (also non-integer) age

in certain intervals of the support [x0, UBt]. For the numerical implementation we need to

”discretize” the constraints by evaluating them only at a finite number of ages. It turned out to

be sufficient to only evaluate the constraints at the spline knots.

In order to obtain starting values for the algorithm described below, we fit a spline representation

to the observed deaths curve of the most recent year t0 for which data is available. To this end

we perform a least square estimation where we require the constraints from Equations 1 to 5 to

be fulfilled.

The basic idea behind the algorithm is that – for any future year t – we search for spline weights

at which solve the Equations 13 and 14 and differ as little as possible from the weights at0 . Thus,

in terms of picking a single deaths curve from Dt,x0 we opt for minimum deaths curve changes

over time (see Section 3).16 The algorithm proceeds as follows:

1. In a first step we ensure that the curve is an element of the space Dt,x0 . To this end, we

scale the vector of spline weights, i.e.

ãt =
1∫ UBt

x0
Bt(x) ∗ at0dx

· at0 ,

such that Equation 1 holds.

2. In the second step, we alter the vector of spline weights such that the deaths curve is an

element of the set Dt,x0 . To this end, we check if ãt solves Equation 14. If it does, we

proceed with the third step. Otherwise, we carry out the following steps a to c which

build on the method of gradient descent:

(a) Based on Equation 14 we define a function ft of a vector of weights a:

ft(a) =
m∑

j=1

wj · A(2,j)
t ∗ a,

where m is the number of rows of the matrix A
(2)
t , A

(2,j)
t is the jth row of the matrix

16By this algorithm we find deaths curves with minimal distance from the observed deaths curve in the year t0.
The algorithm would also work iteratively, i.e. by using the weights at−1 as starting values for year t. However,
if one was only interested in a forecast for year t, one would have to forecast deaths curves for all years up to
year t in that case.
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A
(2)
t , and the weights wj are given by17

wj =





1 if A
(2,j)
t ∗ a < 0

106 if A
(2,j)
t ∗ a ≥ 0

.

(b) We determine the gradient ∇ft(a) of the function ft(a) and, following the method of

gradient descent, update the vector of weights ã
(ν)
t via

ã
(ν)
t = ã

(ν−1)
t − θ · ∇ft(ã(ν−1)t ).

The step size θ is determined by minimizing the difference ft(ã
(ν−1)
t )− ft(ã(ν)t ) under

the constraint that no additional component of the vector A
(2)
t ∗ ã(ν)t becomes positive.

In the first iteration we set ã
(0)
t = ãt and ν = 1.

(c) We update ãt as long as there are positive entries in the vector A
(2)
t ∗ ãt. After the

final update we set ãt = ã
(ν)
t .

3. In the third step, we modify the vector of spline weights such that the deaths curve is

an element of the set Dt,x0 . Similarly to step 2.a, we define a function gt of the vector of

weights a,

gt(a) =
k∑

j=1

ωj · (A(1,j)
t (a)− y(1,j)t )2,

where k is the number of equality constraints, ωj is a scalar weight for the jth equality

constraint, A
(1,j)
t (a) is the left hand side value of Equation 13 for the jth equality constraint,

and y
(1,j)
t is the right hand side value of Equation 13 for the jth equality constraint. In

order to determine the root of the function gt, we apply the method of gradient descent

analogously to the optimization of the function ft. Starting with the vector of spline

weights ãt from Step 2, we search for the vector of spline weights at for which the value of

the function gt assumes its minimum value zero.18

The resulting deaths curve d̂t(x) = Bt(x) ∗ at is an element of the set Dt,x0 and thus a valid

forecast of our model.

17The constant 106 in the following formula stresses the constraints which are not yet fulfilled and therefore
accelerates convergence in the subsequent steps. We found 106 to be in a reasonable range.

18For numerical reasons the algorithm terminates as soon as gt(ãt) < e−7.
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