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Preface
 

Forest resources are crucial in the context of sustainable development and 
climate change mitigation. Dynamic information on the location and evo­
lution of forest resources are needed to properly define, implement, and  
evaluate strategies related to multilateral environmental agreements such 
as the UN Framework Convention on Climate Change (UNFCCC) and the 
Convention on Biological Diversity. For the global change scientific com­
munity and the UNFCCC process, it is important to tackle the technical 
issues surrounding the ability to produce accurate and consistent estimates 
of greenhouse gas emissions and removals from forest area changes world­
wide and at the country level. 

The following compilation of chapters constitutes a review of why and how 
researchers currently use remotely sensed data to study forest cover extent 
and loss over large areas. Remotely sensed data are most valuable where 
other information, for example, forest inventory data, are not available, or 
for analyses of large areas for which such data cannot be easily acquired. 
The ability of a satellite sensor to synoptically measure the land surface from 
national to global scales provides researchers, governments, civil society, 
and private industry with an invaluable perspective on the spatial and tem­
poral dynamics of forest cover changes. The reasons for quantifying forest 
extent and change rates are many. In addition to commercial exploitation 
and local livelihoods, forests provide key ecosystem services including cli­
mate regulation, carbon sequestration, watershed protection, and biodiver­
sity conservation, to name a few. Many of our land use planning decisions 
are made without full understanding of the value of these services, or of the 
rate at which they are being lost in the pursuit of more immediate economic 
gains through direct forest exploitation. Our collection of papers begins with 
an introduction on the roles of forests in the provision of ecosystem services 
and the need for monitoring their change over time (Chapters 1 and 2). 

We follow this introduction with an overview on the use of Earth observa­
tion datasets in support of forest monitoring (Chapters 3 through 5). General 
methodological differences, including wall-to-wall mapping and sampling 
approaches, as well as data availability, are discussed. For large-area moni­
toring applications, the need for systematically acquired low or no cost data 
cannot be overstated. To date, data policy has been the primary impedi­
ment to large-area monitoring, as national to global scale forest monitor­
ing requires large volumes of consistently acquired and processed imagery. 
Without this, there is no prospect for tracking the changes to this key Earth 
system resource. 

The main section of the book covers forest monitoring using optical data 
sets (Chapters 6 through 14). Optical datasets, such as Landsat, constitute 
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viii Preface
 

the longest record of the Earth surface. Our experience of using them in 
mapping and monitoring forest cover is greater than that of other datasets 
due to the relatively rich record of optical imagery compared to actively 
acquired data sets such as radar imagery. The contributions to this section 
range from indicator mapping at coarse spatial resolution to sample-based 
assessments and wall-to-wall mapping at medium spatial resolution. The 
studies presented span scales, environments, and themes. For example, forest 
degradation, as opposed to stand-replacement disturbance, is analyzed in 
two chapters. Forest degradation is an important variable regarding biomass, 
emissions, and ecological integrity, as well as being a technically challenging 
theme to map. Chapters 6 through 14 also present a number of operational 
systems, from Brazil’s PRODES and DETER products, to Australia’s NCAS 
system. These chapters represent the maturity of methods as evidenced by 
their incorporation by governments into official environmental assessments. 
The fourth section covers the use of radar imagery in forest monitoring 
(Chapter  15). Radar data have a long history of experimental use and are 
presented here as a viable data source for global forest resource assessment. 

We believe that this book is a point of departure for the future advancement 
of satellite-based monitoring of global forest resources. More and more 
observing systems are being launched, methods are quickly maturing, and the 
need for timely and accurate forest change information is increasing. If data 
policies are progressive, users of all kinds will soon have the opportunity to 
test and implement forest monitoring methods. Our collective understanding 
of forest change will improve dramatically. The information gained through 
these studies will be critical to informing  policies that balance the various 
demands on our forest resources. The transparency provided by Earth 
observation data sets will, at a minimum, record how well we perform in 
this task. 

We deeply thank Prof. Emilio Chuvieco from the University of Alcalá 
(Spain) who gave us the opportunity to publish this book and supported and 
encouraged us in its preparation. We also sincerely thank all the contributors 
who kindly agreed to take part in this publication and who together have 
produced a highly valuable book. 

Frédéric Achard and Matthew C. Hansen 
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1 
Why Forest Monitoring Matters 
for People and the Planet 

Ruth DeFries 

Columbia University 

CONTENTS 

1.1 	Introduction 

In children’s tales, forests loom as dark and dangerous places holding 
mysterious and magical secrets. Hansel and Gretel ventured into the forbid­
den forest to encounter a child-eating witch. A vicious wolf tricked Little 
Red Riding Hood when she strayed into the forest. Forests are also places of 
enchantment, the home of Snow White’s seven dwarfs, elves and nymphs, 
and the castle of the ill-fated prince in Beauty and the Beast. The stories revere 
forests for their magic and revile them for the perils that lurk within. 

This dual view of forests persists until today. On the one hand, forests 
are roadblocks to progress that occupy space more productively used for 
agriculture. As slash and burn agriculture made its way northward from the 
Mediterranean coast through Europe, beginning about 4,000 years ago until 
the first centuries of the common era, forests were replaced by settled agri­
culture (Mazoyer and Roudart 2006). A similar story played out in North 
America in the last few centuries, with European expansion preceded by the 
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2 Global Forest Monitoring from Earth Observation 

Native American’s use of fire to manage forests (Williams 2006). Throughout 
the currently industrialized world, wholesale clearing of forests enabled 
agriculture to expand and  economies to grow. A similar dynamic is currently 
underway in tropical regions, where economic growth often goes hand-in­
hand with agricultural expansion into forested areas (DeFries et al. 2010). 
There is no doubt that clearing of forests for agriculture played a major role 
in the expansion of the human species into new areas, the growth in popula­
tion from 5 million during the dawn of agriculture to over 7 billion today, 
and increasing prosperity (Mazoyer and Roudart 2006). In this sense, the 
fairy tale’s view of forests as harmful places that are better off cleared reso­
nates with the experience of human history. 

The opposite side of the dual view reveres forests for the large range of 
beneficial services they provide for humanity. Tangible goods such as tim­
ber or recreation are apparent. Less apparent are intangible services such 
as climate regulation, biodiversity, and watershed protection. These regu­
lating ecosystem services are only beginning to be quantified and under­
stood (Millennium Ecosystem Assessment 2005). Without consideration of 
regulating services from forests, if the economic value of land use following 
clearing is greater than the economic value of standing forests, the decision 
to deforest is likely to ensue. This has been the calculus for millennia of for­
est clearing that has reduced over 40% of the world’s forest cover (Figure 1.1). 

FIGURE 1.1 
Approximate percent of the global land surface currently (ca. 1990) occupied by major for­

ests types and the percent previously converted to agriculture. (Values for current percent 

from Wade, T., et al., Conserv. Ecol., 7, 7, 2003 and values for converted percent derived from 

Stokstad, E. Science, 308, 41, 2005, except for boreal forests which is from Table C2 in Scholes, R., 

et al. Summary: Ecosystems and their services around the year 2000. In Hassan, R., et al., eds. 

Ecosystems and Human Well-Being: Current State and Trends, vol 1. Washington, DC: Island Press, 

2005, 2–23.) 



 
  

 

 
 
 
 
 

 

 
 
 

 
 
 
 
 
 

 
 

 

 

3 Why Forest Monitoring Matters for People and the Planet 

Forest conversion varies greatly in different forest types in different parts of 
the world. Nearly 70% of Mediterranean forests and almost 60% of temperate 
deciduous and dry tropical forests have been converted to agriculture. 
Tropical moist broadleaf forest and boreal forests still have substantial areas 
of forest remaining. 

Remaining forests and the services they provide are increasingly under 
pressure from both economic and biophysical forces. With increases in pop­
ulation, per capita consumption, and shifts to animal-based diets, demand 
for agricultural products is estimated to increase by at least 50% by 2050 
(Godfray et al. 2010; Nelleman et al. 2009; Royal Society of London 2009). 
Increasing yield rather than expansion explains the bulk of the vast increase 
in agricultural production in the last century and is likely to continue to be 
the main factor in meeting future food demand (Mooney et al. 2005), but 
agricultural expansion is also likely to continue into the future. Tropical 
forest and woodlands are the only biomes with substantial area remain­
ing for agricultural expansion. In the past few decades, over 80% of agri­
cultural expansion in the tropics occurred into intact and disturbed forests 
(Gibbs et al. 2010). Rapid clearing of tropical forests in the last few decades 
has enabled escalating production of commodities such as oil palm, soy, and 
sugarcane in response to rising demand (Johnston and Holloway 2007). This 
pressure on tropical forests and woodlands, particularly in South America 
and Africa, will only continue in the future with competition of land for food 
production and biofuels. 

Ecological and climatic factors in addition to economic forces are cre­
ating pressures on forests. In tropical forests, dry conditions combined 
with ignition sources create conditions conducive to fires (Chen et al. 2011; 
van der Werf et al. 2008). In temperate and boreal latitudes, anomalously 
dry years lead to large forest fires, such as the Russian fires of 2010 (Baltzer 
et al. 2010). Warmer conditions promote insect outbreaks, such as the pine 
beetle infestation of western North America, leading to loss of forest stands 
(Kurz et al. 2008). 

These multiple economic, climatic, and ecological forces acting in differ­
ent parts of the world reverberate to alter the services that forests perform, 
including habitats that forests provide for other species and the ability of 
forests to sequester carbon and regulate climate. As both knowledge of the 
role of forests in providing ecosystem services and the pressures on forests 
increase, the ability of communities, countries, and global-scale policy mak­
ers to monitor forests becomes paramount. 

Forests in different parts of the world contribute differentially to ecosys­
tem services, depending on the economic and ecological setting. For exam­
ple, from an ecological point of view, boreal and peat forests regulate climate 
through their large stores of belowground carbon while tropical forests con­
tain nearly all of their carbon aboveground. From a socioeconomic point of 
view, in dry tropical forests with relatively dense populations of poor, forest-
dependent people, for example, forests contribute substantially to livelihood 
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needs such as fuel wood and fodder for livestock (Miles et al. 2006). In tem­
perate forests, the recreation value of forests for populations with disposable 
income for tourism or the need to protect watersheds for large urban centers 
becomes more important. This heterogeneity in services and pressures on 
forests create varying needs for monitoring in different parts of the world. 

This introductory chapter describes a framework for assessing land use 
and ecological processes affecting forests and the implications for a range of 
ecosystem services. The chapter then addresses the evolving needs for forest 
monitoring in light of information needs to maintain these services. 

1.2 	 Soc ioeconomic and Ecological Processes Affecting  

Forests: What Processes Need to Be Monitored? 

Methods and approaches to monitor forest extent and condition depend on 
the processes of interest to the user of the information. These processes— 
for example, changes in productivity, deforestation, or increases in forest 
cover—vary greatly in different forest regions around the world and change 
over time depending on economic and ecological factors. These myriad pro­
cesses acting on forests require considerable thought in designing monitor­
ing efforts that are flexible and appropriate to the processes occurring in 
different forest regions. 

1.2.1 Land Use Processes 

The generalized schematic of land use transitions that accompany economic 
development provides a framework to view pressures on forests and impli­
cations for ecosystem services (DeFries et al. 2004; Mustard et al. 2004). The 
extent and condition of forests are intricately tied to land use change, as 
demand for timber, food, and other agricultural products creates pressures to 
use forests or clear them to make way for croplands and pasture. Pressure 
to use forested land, in turn, is connected to transitions that typically occur in 
the course of urbanization, development, and structural transformations 
in the economy from predominance of agrarian to industrial sectors. Land 
use typically follows a trajectory from presettlement wildlands with low 
population densities, to frontier clearing and subsistence agriculture with 
people reliant on local food production, to higher yield intensive agriculture 
to support urban populations. Although the details and speed of transitions 
vary greatly in different places and at different times in history, this general 
pattern describes the overall trajectory. Different places around the world 
can be viewed from a lens of their position within this stylized trajectory. 
On the one hand, the southern Brazilian state of Mato Grosso, for example, 
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5 Why Forest Monitoring Matters for People and the Planet 

FIGURE 1.2 
Generalized land use transition that accompanies economic development, urbanization, 

and shift from agrarian to industrial economies (DeFries et al. 2004; Mustard et al. 2004). 

Accompanying proportion of landscape in forest cover (dark line) first declines and then 

increases with the forest transition (Mather 1992; Rudel et al. 2005; Walker 1993). Proportions 

of landscape are hypothetical, do not represent actual data, and depict only general patterns 

that vary in different places. Processes shift from logging and deforestation to degradation and 

regrowth as regions progress through stages in land use and forest transitions. 

is currently undergoing a very rapid transition from wildlands to intensive 
agriculture, with rapid frontier clearing that largely bypasses the step of 
subsistence agriculture. South Asia, on the other hand, moved through the 
frontier clearing of wildlands millennia ago, but much of the land remains in 
small-scale farming for subsistence and local markets (Figure 1.2). 

In forested areas, land use transitions accompany a characteristic tra­
jectory in forest extent and condition. In the early, wildland stage of the 
land use transition, forests cover extensive areas with low-intensity use for 
hunting, collection of foods and medicines, or shifting cultivation by low 
densities of indigenous peoples. With frontier clearing, logging of valu­
able tree species might occur followed by deforestation and an increasingly 
fragmented forest. As the transition moves into a period of subsistence 
agriculture, remaining forest patches are likely to be heavily used for fuel 
wood,  fodder, and nontimber forest product collection. Forest degradation, 
currently extensive in dry tropical forests of Asia, is the main pressure on 
forests during a subsistence stage of a land use transition. With urbaniza­
tion, economic growth, and agricultural intensification, the well-known 



 
 

 
 

 

 
  

 

 

 

 
 

 

 

6 Global Forest Monitoring from Earth Observation 

“forest transition” of increasing forest cover has been observed in many 
countries (Mather 1992; Rudel et al. 2005; Walker 1993). Rudel et al. (2005) 
identify two pathways through which increasing forest cover occurs. One 
pathway is an increase in planted trees incentivized by a shortage of timber; 
such was the case in Europe. The other pathway is through abandonment 
of less productive agricultural land as economic growth brings small-scale 
farmers to urban areas and food production is transported from productive 
agricultural areas. Such was the case in New England, where forest cover 
rebounded in areas of abandoned agriculture. 

Land use and forest transitions provide a framework to assess monitoring 
needs in light of the varying pressures on forests at different stages along 
the transition. Forest areas in distant wildlands are not likely to be under­
going rapid change, consequently requiring less frequent monitoring for 
human impacts. In frontier forests undergoing a transition from wildlands, 
deforestation and degradation from unsustainable logging are the activities 
requiring monitoring. Places in a mode of small-scale farming with local 
reliance on forest patches for livelihood needs are subject to degradation. 
Monitoring for deforestation in such locations is less relevant and degrada­
tion is more likely to be important. Finally, in the later stages of a land use 
transition, regrowth of forests becomes an important process, requiring a 
monitoring strategy to identify increases rather than decreases of tree cover. 

As different places move through land use and forest transitions, the 
processes that require monitoring will shift. Monitoring efforts for defor­
estation might most usefully focus on frontier regions and monitoring for 
degradation in postfrontier remaining forest patches. Monitoring to identify 
regrowth is most relevant in those places undergoing agricultural abandon­
ment. Methods vary to monitor these different processes, requiring flexibil­
ity in monitoring efforts as processes requiring monitoring change. 

1.2.2 Ecological Processes 

As with land use processes, ecological processes affecting forests vary in 
different places. The types of ecological processes that may be important for 
monitoring systems to identify include: 

Biome shifts in response to climate change: Climate change is already  leading to 
shifts in boundaries of forests biomes in high latitudes (Beck et al. 2011). In 
the tropics, a biome shift between savanna and forest has been hypothesized 
with a drier climate and increased fires (Hirota et al. 2010). As the process 
of biome shifts is heterogeneous and conflicting evidence arises from differ­
ent places, a remote sensing approach is critical to enable observations over 
large areas. Shifts in forest boundaries have major consequences for carbon 
storage and biophysical feedbacks to climate through changes in albedo and 
evapotranspiration of the land surface. A long-term monitoring system that 
enables observations of changes in forest boundaries allows earth system 



 

 
 

 

  

 

 

 
 

 

 
 
 
 

7 Why Forest Monitoring Matters for People and the Planet 

models to incorporate dynamic interactions between vegetation and climate 
in the growing field of dynamic vegetation models (Gonzalez et al. 2010). The 
ability to monitor such changes over large areas at fine spatial resolution is 
becoming more feasible. 

Changes in forest ecosystems in response to atmospheric chemistry: Enhanced for­
est productivity and biomass accumulation attributable to fertilization from 
elevated carbon dioxide concentrations is controversial but may explain 
increased productivity and biomass accumulation in tropical forests (Lewis 
et al. 2009). Nitrogen deposition is another forcing factor on forest productiv­
ity, with studies suggesting an effect on species composition and ecosystem 
function in temperate and northern Europe and North America (Bobbink 
et al. 2010). Long-term monitoring of productivity cannot attribute the cause 
of any observed changes, but is a critical piece to unraveling the responses of 
forests to changing atmospheric chemistry. 

Fire: The ability to monitor active fires (Justice et al. 2002) and burned areas 
(Giglio et al. 2010) with remote sensing has developed rapidly. Many types 
of fires affect forests, including intentionally set deforestation fires, fires 
escaped from land management, and fires ignited by lightning. The extent 
to which these fires occur depends on multiple factors such as climate, fuel 
loads, and ignition sources. Fire is a particularly complex phenomenon that 
combines climatic, ecological, and human factors (Bowman et al. 2009). 

A framework to identify monitoring needs through a lens of economic and 
ecological processes creates the need for multiple approaches that can vary 
through space and time. To date, global monitoring with remote sensing has 
focused predominantly on forest extent. As methods develop, robust global 
forest monitoring in the longer term should assess changes occurring in 
response to the full suite of processes affecting forests throughout the world. 

1.3 Ecosystem Services from Forests 

Monitoring systems aim to identify changes in the extent and condition of 
forests so that timely and effective policies can be put in place to avoid nega­
tive consequences for ecosystem services. Forests provide many ecosystem 
services that accrue benefits at proximal, downstream, and distal scales. 
Similar to the processes affecting forests discussed above, ecosystem services 
from forests and their beneficiaries vary across forest regions according to 
socioeconomic and ecological settings. Consequently, monitoring methods 
and approaches need to vary depending on the ecosystem services of con­
cern. A monitoring system that aims to be applied to the  implementation of 
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TABLE 1.1 

Some Ecosystem Services Accruing to Beneficiaries at Different Spatial Scales from 
Forests in Varying Stages of Land Use Transitions 

Location of 

Beneficiary Forest Condition by Stage of Land Use Transition 

Wildlands Prior to Frontier Forest Fragments Regrowth with 
Clearing Embedded in Small-Scale Agricultural 

Agricultural Land Intensification 
Proximate Livelihood needs and Livelihood needs and 

local regulating services local regulating services 

(e.g., pollination) for low for high density of 

density of forest­ forest-dependent people 

dependent people 

Downstream Prevention of soil erosion, Prevention of soil 

flood regulation, water erosion, flood 

purification regulation, water 

purification 

Distal Carbon storage, Biodiversity in forest Carbon 

biodiversity fragments sequestration, 

biodiversity in 

secondary forest 

Note: Dominant ecosystem service of each stage based on author’s judgment is in bold. 

REDD (reducing emissions from deforestation and degradation), for  example, 
requires observations of forest extent and biomass while a system aimed at 
biodiversity requires monitoring of habitat and forest structure. The follow­
ing highlights the range of ecosystem services from forests at different scales 
(Table 1.1). 

Proximal: Ecosystem services from forests play a particularly essential role 
for forest-dependent people throughout the global South (Agrawal et al. 
2011). Natural capital from forests is a disproportionately large component 
for millions of poor households and communities relying directly on forests 
for livelihood needs. Services from forests include fuel wood, fodder for 
livestock, nontimber forest products to generate income, meat for protein, 
and medicinal plants. On the one hand, regulating services such as clean 
water, pollination, disease regulation, and pest control as well as spiritual 
and cultural importance of forests are more difficult to quantify but are 
important locally. On the other hand, forests and, particularly, protected 
areas harbor species that provide a disservice to local communities by crop 
raiding and livestock predation affecting local residents (White and Ward 
2010) and spread of zoonotic diseases (Keesing et al. 2010). 

Downstream: The watershed protection value of forests has garnered the most 
tractable implementation of payment for ecosystem service schemes. Forests 
buffer runoff to regulate floods and filter water to improve water quality. 



   
 
 

 

 
 

 

 
 

 
 
 

 

 
 

 

 
 

 
 
 

9 Why Forest Monitoring Matters for People and the Planet 

Well-known examples of forest conservation for watershed protection include 
watersheds for the surface water supply of urban areas such as New York City 
and Quito, Ecuador (Postel and Thompson 2005). In addition to downstream 
users, another example of the role of forests at a regional scale is through 
energy balance and evapotranspiration, such as the Amazon basin where 
deforestation leads to decreases in basin-wide precipitation of climate and 
downwind transport of vapor (Davidson et al. 2012). 

Distal: Global-scale services from forests accrue to beneficiaries living 
far away. Carbon storage to maintain carbon in vegetation rather than as 
a greenhouse gas in the atmosphere is a critical role for forests. Terrestrial 
vegetation and litter combined contain approximately the same amount of 
carbon as the atmosphere (850 and 780 Pg, respectively), with forests a par­
ticularly important reservoir for carbon (Houghton 2007). Tropical forests 
are exceptionally valuable for biodiversity in terms of species richness, fam­
ily richness, and species endemism (Mace et al. 2005). Distal beneficiaries of 
biodiversity value the knowledge of existence as well as the functional role 
of biodiversity for disease regulation, resilience to disturbance, and other 
functions (Thompson et al. 2011). 

In sum, forests provide a myriad of ecosystem services that vary in differ­
ent forest regions. Aboveground carbon storage and biodiversity are particu­
larly relevant in humid tropical forests. Local livelihood needs are relevant 
in dry tropical forests, and watershed protection is particularly relevant in 
forests upstream of urban centers reliant on surface water. Communities, 
national governments, and global policy makers place varying priorities on 
different ecosystem services. For example, local communities may place little 
value on carbon and biodiversity services that accrue to distal beneficiaries, 
while global policy makers may place little value on forest products and 
other livelihood needs for local communities. This mismatch in scales and 
differences in priorities about which ecosystem services are most important 
create tensions for designing monitoring systems. 

The importance of different ecosystem services may vary through time as 
places move through land use transitions. Monitoring systems designed to 
address particular ecosystem services might require flexibility as priorities 
shift. For example, if carbon storage is the rationale for a monitoring program, 
the focus might be on frontier regions aimed at reducing deforestation and 
on late-stage transitions aimed at sequestering carbon through regrowth 
(Lambin and Meyfroidt 2011). If the rationale were rather on local livelihood 
needs for forest products, a monitoring system would focus on places in a 
subsistence stage of the land use transition to monitor degradation. For water­
shed protection, riparian forest cover would be of primary importance. 

In reality, existing monitoring systems have not explicitly identified 
the rationale in terms of ecosystem services. Monitoring systems ideally 
would be relevant for multiple ecosystem services to make effective use 



 
 
 

 
 

 

 

 

 
   

 

  
  

 

 

10 Global Forest Monitoring from Earth Observation 

of the investment. As monitoring systems are implemented in different 
countries throughout the developing world in different stages of land use 
transitions, explicit consideration of the ecosystem services of interest may 
be a useful undertaking. 

1.4 Evolving Capabilities for Forest Monitoring 

Forest monitoring to date (FAO 2010; Forest Survey of India 2005; INPE 2007) 
has mainly focused on the areal extent of forest cover and changes over 
time. Other variables of forest condition are increasingly becoming possible 
to monitor from satellites. Biomass, a key variable for carbon storage, has 
traditionally been collected through ground-based inventories. Recent abili­
ties to assess biomass using remote sensing (Saatchi et al. 2006) are promis­
ing technological advances that are becoming more amenable to operational 
implementation. Monitoring degradation from logging with the spatial pat­
tern characteristic of the Amazon has also advanced to be operational (Asner 
et al. 2006; Souza Jr. et al. 2005). These advances represent major progress for 
subnational, national, and global efforts to monitor forests and the ecosys­
tem services they provide. 

While these advances are major achievements, several aspects of forest 
condition are still in need of methodological development to address the 
full range of ecosystem services and socioeconomic and ecological processes 
affecting forests in different parts of the world. One such need is forest 
degradation related to local uses such as fuel wood collection and forest 
grazing, such as occurring extensively in Asian forests with high density 
of poor populations dependent on local ecosystem services. While monitor­
ing of degradation characteristics of logging in the Amazon has advanced, 
monitoring of degradation from other local uses has not progressed to the 
same degree. Another aspect that has not been incorporated in monitoring 
is postclearing land use. The land use and management following defores­
tation, such as fertilizer use, agricultural activity, and crop type and diver­
sity, has implications for ecosystem services and is required information to 
assess the impact of deforestation (Galford et al. 2010). While methods have 
advanced to assess postclearing land use in terms of pasture versus crop 
(Macedo et  al. 2012), other aspects of land management require attention. 
Finally, the importance of lands outside forests for ecosystem services such 
as biodiversity, so-called land sharing, is evident, given the inability to pro­
tect enough lands to preserve all biodiversity. India’s national monitoring 
efforts to assess trees outside forests (Forest Survey of India 2005) is a step 
toward addressing this need. Additional forest variables including vegeta­
tion structure and connectivity are integral yet unrealized aspects of moni­
toring to maintain ecosystem services. 



 
 

  
  

 
 

 
 

 
 

 

 
 
 
 

 
 
 

 

 

 

11 Why Forest Monitoring Matters for People and the Planet 

1.5 Conclusion 

Interest and investments in forest monitoring systems have risen sharply, 
mainly in anticipation of REDD. Monitoring systems at global, national, 
subnational, and community levels are all components of the interest in 
establishing monitoring systems. As these investments move forward, it is 
timely to consider the purposes of a monitoring system in terms of which 
land use-driven and ecological processes need to be captured and how the 
information can be used to track changes in ecosystem services. 

Forests in different parts of the world are facing pressures from both 
economic and biophysical factors. For instance, tropical forests are under pres­
sure from economic forces for agricultural expansion, while forests in high 
latitudes are moving northward due to climate change. Land use and forest 
transition frameworks provide a context to identify the processes affecting 
forests in varying paths along a development trajectory, with deforestation 
and degradation altering forests in early stages and regrowth in later stages 
with agricultural intensification and urbanization. From a biophysical point 
of view, ecological processes related to biome shifts from climate change, 
enhanced productivity from changing atmospheric chemistry, and fire are 
altering forest extent and biomass. Monitoring approaches vary depending 
on which processes are of interest. For example, a monitoring system to track 
human land use change would most effectively focus on frontier regions and 
less on wildlands. If the process of interest is productivity change, a compre­
hensive monitoring of biomass in wildlands is needed. 

Approaches for monitoring systems also vary depending on which eco­
system services are of interest to the user. Forests provide a multitude of 
ecosystem services at a range of scales. Some services accrue benefits at 
proximal (e.g., forest products for local livelihoods), some downstream (e.g., 
watershed protection), and some at distal scales (e.g., carbon storage and  
biodiversity). Perspectives on which ecosystem services are most important 
depend on the user. Local communities are likely to place more importance 
on those ecosystem services of value to their needs while global policy mak­
ers are likely to place importance on global-scale, distal services. 

Traditionally, forest monitoring and inventories have been designed 
around the commercial value of forests. With increasing emphasis on the 
value of forests for carbon storage, conservation of biodiversity, watershed 
protection, and a myriad of other ecosystem services, the focus for monitor­
ing systems becomes more complex. Explicit consideration of the ecosystem 
services of interest and the methods required to monitor changes in those 
services require attention to design systems that are relevant for a coun­
try’s circumstances. Advancements in technologies that enable monitoring 
of biomass, postclearing land use, forest structure, and other attributes are 
rapidly developing and offer a wide menu of possibilities for monitoring 
systems. 
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Carbon Stocks (PgC)	 (Forests) 

Atmosphere 825 

Land 2,000 

Vegetation 500 (436) 

Soil 1,500 (426) 

Ocean 39,000 

Surface 700 

Deep 38,000 

Fossil fuel reserves 10,000 

Annual Flows (PgC yr–1) 
Atmosphere–oceans 90 

Atmosphere–land 120 (65) 

Net Annual Exchanges (PgC yr–1 Averaged over 2000–2009) 
Fossil fuels 7.7 

Land use change 1.1 (1.0) 

Atmospheric increase 4.1 

Oceanic uptake 2.3 

Residual terrestrial sink 2.4 (2.4) 
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2.1 Introduction 

Forests are important in the global carbon cycle because they hold in their 
vegetation and soils about as much carbon as is held in the atmosphere 
(Table  2.1), and, with an annual GPP of 65 PgC yr–1 (Beer et  al. 2010), 
forests  circulate about 8% of the atmosphere’s carbon each year through 
photosynthesis and respiration. These exchanges are part of the natural 
carbon cycle. More important from the perspective of climate change is the 
role that  forests play in altering the concentration of atmospheric CO2 over 
decades to centuries. This chapter discusses forests in that role. It begins with 
a brief review of the global carbon cycle and goes on to discuss, first, the 
global carbon sink measured in forest inventories, second, sources and sinks 
of carbon that result from direct human use of forests, and, third, possible 
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reasons why the results from inventories and analyses of land use change 
do not agree. The chapter ends with a discussion of the processes affecting 
carbon storage on land that are and are not amenable to monitoring with 
satellites. 

Note that forests affect climate through emissions of chemically 
and radiatively active gases other than CO2, including other carbon 
compounds. Further, changes in forest area affect climate biogeophysically 
as well as biogeochemically through effects on albedo, surface roughness, 
and evapotranspiration (e.g., Pongratz et  al. 2010). Non-CO2 gases and 
biophysical effects are not considered here. 

2.2 Global Carbon Cycle 

The global carbon cycle is the exchange of carbon between the four major 
reservoirs: atmosphere, oceans, land, and fossil fuels. This chapter, and most 
of carbon cycle science, is concerned with anthropogenic carbon, that is, the 
amount of carbon emitted each year from combustion of fossil fuels and land 
use change and the sinks for that carbon in the atmosphere, oceans, and 
land. Forests play a major role in both the emissions of carbon from land use 
change and the sinks of carbon on land. 

Figure 2.1 shows the annual sources and sinks of carbon in the major 
global reservoirs over the last century and a half. The most noticeable 

FIGURE 2.1 
Annual sources (+) and sinks (–) in the global carbon budget. Note that the net terrestrial flux 

was consistently a net source before 1940, but has been a variable and growing sink in recent 

decades. 



 
  

 
 
 
 
 
 

 
 
 

  
 
 
 
 
 
 

  

 

   

   

1980s 1990s 2000–2009 

Fossil fuel emissions 5.5 ± 0.3 6.4 ± 0.4 7.7 ± 0.5 

Land use change 1.5 ± 0.7 1.6 ± 0.7 1.1 ± 0.7 

Atmospheric increase –3.4 ± 0.1 –3.1 ± 0.2 –4.1 ± 0.1 

Oceanic uptake –2.0 ± 0.6 –2.2 ± 0.7 –2.3 ± 0.4 

Residual terrestrial sink –1.6 ± 1.0 –2.7 ± 1.0 –2.4 ± 1.0 
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TABLE 2.2 

Global Carbon Budget 

Source: From Le Quéré, C., et al., Nature GeoSci., 2, 831, 2009 and http:// 

www.globalcarbonproject.org/carbonbudget/09/files/ 

GCP2010_CarbonBudget2009.pdf. 

Notes: Units are PgC yr–1. Positive values indicate sources of carbon to the 

atmosphere; negative values indicate sinks, or removals from the 

atmosphere. 

feature of the history is the increasing rate at which carbon has been 
emitted from combustion of fossil fuels (including cement production and 
gas flaring). In recent decades, the emissions have grown from 5.5 PgC yr–1 

averaged for the 1980s to 6.4 PgC yr–1 for the 1990s to 7.7 PgC yr–1 over 
the period 2000–2009 (Table 2.2). After a slump in 2009 from the global 
financial crisis, fossil fuel emissions were above 9 PgC in 2010 (Peters et al. 
2012). The annual emissions from fossil fuels are calculated from reports 
from the United National Energy Statistics. The error is thought to be ±6% 
(Le Quéré et al. 2009). 

The figure also reveals that the sinks for carbon in the atmosphere, land, 
and oceans have increased over time, in proportion to annual emissions. 
In 1958 the average concentration of CO2 in air at Mauna Loa was about 
315 ppm; in 2010 it was about 390 ppm. Today there are nearly 200 stations, 
worldwide, where weekly flask samples of air are collected, analyzed for 
CO2 and other constituents, and where the resulting data are integrated 
into a consistent global data set (http://www.esrl.noaa.gov/gmd/ccgg/). 
The rate of increase in concentrations averaged about 1 ppm yr–1 in the 
1950s and 1960s, about 1.5  ppm yr–1 in the 1980s and 1990s, and about 
1.9 ppm yr–1 between 2000 and 2009. The increase of 1.9 ppm CO2 yr–1 is 
equivalent to an increase of ~4 PgC yr–1. The error is 0.04 PgC yr–1 (Canadell 
et al. 2007). 

The annual uptake of carbon by the world’s oceans is based on ocean gen­
eral circulation models coupled to ocean biogeochemistry models (Le Quéré 
et al. 2009), corrected to agree with the observed uptake rates over 1990–2000 
(Canadell et al. 2007). The error in the modeled oceanic sink is thought to be 
0.4 PgC yr–1. 

There are no direct measurements of terrestrial sources or sinks glob­
ally. Instead, the annual net exchange of carbon between land and the 

http://www.globalcarbonproject.org
http://www.globalcarbonproject.org
http://www.globalcarbonproject.org
http://www.esrl.noaa.gov
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atmosphere is calculated by the difference between the annual release of 
carbon from fossil fuels and the annual accumulations in the atmosphere 
and oceans. The total emissions must balance the total sinks. The net ter­
restrial flux of carbon was a small source before 1940 and a sink after. 
That sink is variable year to year and appears to have grown in recent 
decades. It averaged 1.3 PgC yr–1 between 2000 and 2009. The role of for­
ests in the historic source of carbon and the more recent sink is the topic 
of this chapter. 

2.3 Forest Inventories 

A recent paper by Pan et al. (2011) summarized the results of measurements 
obtained through forest inventories. Countries in temperate zone and boreal 
regions have systematic forest inventories that periodically measure the vol­
umes of timber. Biomass and carbon densities can be calculated from these 
measurements of wood volume. The inventories often include measurement 
of belowground carbon stocks and coarse woody debris on the forest floor, 
and estimates are also made of the storage of carbon in wood products and 
land fills. Because nearly all forests are sampled in these inventories, the 
change in carbon storage from one inventory to another represents the total 
change in forest carbon, including wood products—a net sink in temper­
ate and boreal forests of 1.22 PgC yr–1 averaged over the period 2000–2007 
(Table 2.3). 

This measured sink is a net sink composed of both releases of carbon from 
fire, storms, disease, and logging and uptake of carbon in growing forests. It 
is worth noting that the sampling used to obtain these estimates is arguably 
better for measuring changes in wood volume in existing forests than it is for 
measuring changes in forest area. A satellite-based approach might provide 
more accurate estimates of changes in forest area. 

The net sink for the world’s temperate zone and boreal forests does not 
mean that all such forests were sinks. Canadian forests, for example, were 
a small source over 1990–2007, and European forests were a net source 
over 2000–2007, according to analyses of forest inventories (Pan et al. 2011). 
Furthermore, studies based on analyses of satellite data suggest that forest 
area has been declining, for example, in the eastern United States (Drummond 
and Loveland 2010; Jeon et al. 2011). 

Systematic inventories of forests are rare in tropical countries. However, 
small permanent plots (generally ~1 ha) have been inventoried for years 
in the unmanaged, or intact, forests of Amazonia (Phillips et  al. 2004, 
2008) and Africa (Lewis et al. 2009). These inventories show an average 
net accumulation of 0.84 MgC/ha yr–1 in biomass. The total area of tropi­
cal forests in 2010 was 1949 million ha (FAO 2010), but the area of intact 



 
 
 
 
 
 
 

 
 

 
 

 

 

  

   

   

 

 

 

1980s 1990s 2000–2007 

A. Forest Inventories 
Temperate and boreal forests (a) –1.17 ± 0.11 –1.28 ± 0.12 –1.22 ± 0.11 

Intact tropical forests (b) –1.33 ± 0.35 –1.02 ± 0.47 –1.19 ± 0.41 

Total  –2.50  –2.30  –2.41 

B. LULCC 
Temperate and boreal forests 

Gross uptake (c) –1.38 –1.48 –1.56 

Gross emissions  1.51  1.53  1.52 

Net flux  0.13  0.05  –0.04 

Tropical forests 
Gross uptake (d) –1.57 ± 0.50 –1.72 ± 0.54 –1.64 ± 0.52 

Gross emissions 3.03 ± 0.49 2.82 ± 0.45 2.94 ± 0.47 

Net tropical LULCC flux (e) 1.46 ± 0.70 1.10 ± 0.70 1.30 ± 0.70 

Net flux for tropical forest (b + e)  0.13  0.08   0.11 

Net global forest sink (a + b + e) –1.04 ± 0.79 –1.20 ± 0.85 –1.11 ± 0.82 

Gross global forest sinka (a + b + d)  –4.07  –4.02  –4.05 

Gross global forest sinkb (a + b + c + d)  –5.45  –5.50  –5.61 
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TABLE 2.3 

Average Annual Net Source (+) or Sink (–) for Carbon Based on (A) Forest Inventories 
and (B) LULCC 

Source: From Pan, Y., et al., Science 333, 988, 2011. 
a As reported by Pan et al. (2011). 
b With gross uptake in temperate and boreal forests (c) included. 

forests, for which this average accumulation applies, was smaller. At least 
557 million ha of forest are estimated by Houghton (2010, unpublished 
data; global results reported in Friedlingstein et al. 2010) to be managed, 
that is, recovering from wood harvest or in the fallow portion of shifting 
cultivation. Subtracting this area of managed forests from the total area of 
tropical forests yields the area of intact forests (1,392 million ha) and thus 
a net carbon sink in these unmanaged tropical forests of 1.19 PgC  yr–1 

(Table 2.3). 
The carbon sink in the world’s inventoried forests was 2.4 PgC yr–1 (1.22 

in temperate zone and boreal forests and 1.19 PgC yr–1 in the unmanaged 
forests of the tropics). In contrast, the net terrestrial sink calculated from the 
global carbon balance (Section 2.2) was 1.3 PgC yr–1 in the same period (1990– 
2007). The difference implies a source of 1.1 PgC yr–1 either in ecosystems 
other than forests or in the managed forests of the tropics not included in 
the inventories. The source/sink for managed tropical forests is determined 
from an analysis of land use change, described below (Houghton 2010, 
unpublished data). 



 
 
 
 

 
 

 
 

 

 

 
 

 

 
 
 

 

 
 

21 Role of Forests and Impact of Deforestation in the Global Carbon Cycle 

2.4 Land Use Change (Direct Anthropogenic Effects) 

Managed lands, or those lands directly affected by land use and land cover 
change (LULCC), can lead to either sources or sinks of carbon, and many 
analyses of LULCC have attempted to estimate those sources and sinks. 
“Land use” refers to management within a land cover type. For example, 
the harvest of wood does not change the designation of the land as forest 
although the land may be temporarily treeless. “Land cover change,” in con­
trast, refers to the conversion of one cover type to another, for example, the 
conversion of forest to cropland. Note that “deforestation” as used in this  
chapter refers to the conversion of forest to another land cover. Logging,  
even clear-cut logging, is not deforestation unless it is followed by a land use 
without forest cover, for example, cropland. 

Ideally, LULCC would be defined broadly to include not only human-
induced changes in land cover, but all forms of land management (e.g., tech­
niques of harvesting). The reason for this broad ideal is that the net flux 
of carbon attributable to management is that portion of a terrestrial carbon 
flux that might qualify for credits and debits under a post-Kyoto agreement. 
However, it is perhaps impossible to separate management effects from nat­
ural and indirect effects (e.g., CO2 fertilization, N deposition, or the effects of 
climate change). Furthermore, the ideal requires more data, at higher spatial 
and temporal resolutions, than have been practical (or possible) to assemble 
at the global level. Thus, most analyses of the effects of LULCC on carbon 
storage have focused on the dominant (or documentable) forms of manage­
ment and, to a large extent, ignored others. 

Recent estimates of the flux of carbon from LULCC are shown in Figure 2.2. 
Most of these emissions in recent decades have been from the tropics, while 
the net annual flux of carbon from regions outside the tropics has been nearly 
zero (Houghton 2010, unpublished data). This near neutrality does not indi­
cate a lack of activity outside the tropics. Rather, the sources of carbon from 
wood harvest are largely balanced by the sinks in regrowing forests har­
vested in previous years. Annual gross emissions and rates of uptake from 
LULCC are nearly as great in temperate and boreal regions as they are in 
the tropics (Richter and Houghton 2011). Rates of wood harvest, for example, 
are nearly the same in both regions. The main difference between the two 
regions is that forests are being lost in the tropics, while forest area has been 
expanding in Europe, China, and the United States. 

The global net flux of carbon from LULCC based on these estimates is 
approximately 1.0 PgC yr–1 for the last three decades and 1.1 PgC yr–1 for the 
years 2000–2009 (Houghton 2010, unpublished data). Forests accounted for 
90%–95% of this net source, and the global carbon budget is essentially bal­
anced: the emissions from LULCC in the tropics (1.3 PgC yr–1) are more than 
offset by a sink in the forests of all regions (2.4 PgC yr–1) as determined from 
forest inventories (see more details in Section 2.4.3). 
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FIGURE 2.2 
Recent estimates of the net emissions of carbon from land use and land cover change (LULCC). 

Houghton’s estimate (2010, unpublished data), which is used as an example throughout this 

chapter, is highlighted. 

The discussion below focuses on identifying the reasons underlying 
differences among the many estimates in Figure 2.2. Differences are grouped 
into two major categories: (1) data for rates of LULCC and carbon density 
and (2) the types of LULCC processes included in the analyses. 

2.4.1 Data Used to Define Changes in Forest Area and Carbon Density 

All of the approaches for calculating the emissions of carbon from LULCC 
consider the areas affected (e.g., deforested or reforested) and the emission 
coefficients (carbon lost or gained per hectare following a change in land 
management). The approaches differ, first, in the data used to define changes 
in the areas of croplands and pastures; and, second, in the way carbon stocks 
and changes in carbon stocks are estimated (some are modeled; others are 
specified from observations). 

A significant difference among approaches is the spatial resolution of the 
analysis. The nonspatial approach of bookkeeping models (e.g., Houghton 
2010, unpublished data) cannot represent the spatial heterogeneity of biomes, 
and thus the emissions calculated with mean carbon densities for large 
regions may be biased. In contrast, spatially explicit information on changes 
in forest area, especially when combined with spatially explicit estimates 
of biomass density, should provide more accurate estimates of the carbon 
emissions from LULCC. Compared with nationally aggregated estimates of 
change used in bookkeeping models, spatially explicit data reduce uncertain­
ties by identifying where and which forests types have undergone change. 
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As biomass density can vary substantially within a country and across forest 
types, satellite data provide a clear benefit. The spatial colocation of defores­
tation with carbon density will greatly improve the precision of carbon emis­
sions, including the sources and sinks from ecosystems not directly affected 
by land use or land cover change (Houghton and Goetz 2008). 

Note that although process-based models are spatially explicit (Pongratz 
et  al. 2009; Shevliakova et  al. 2009), the historical data for simulating land 
cover change rarely are. Maps, at varying resolutions, exist for many parts 
of the world, but only during the satellite era (Landsat began in 1972) are 
spatial data on land cover change available, in theory. In fact, there are many 
holes in the coverage of the earth’s surface until 1999 when the first global 
acquisition strategy for moderate spatial resolution data was undertaken with 
the Landsat Enhanced Thematic Mapper Plus Sensor (Arvidson et al. 2001). 
The long-term acquisition plan of Landsat ETM+ data ensures annual global 
acquisitions of the land surface. However, cloud cover and phenological vari­
ability limit the ability to provide annual global updates of forest extent and 
change. The only other satellite system to provide global coverage of the land 
surface is the ALOS PALSAR instrument, which also includes an annual 
acquisition strategy for the global land surface (Rosenqvist et al. 2007). 

Remote sensing–based information on recent land cover change has 
been combined with regional statistics, such as from FAO, to reconstruct  
spatially explicit land cover reconstructions covering more than the satel­
lite era (Ramankutty and Foley 1999; Goldewijk 2001; Pongratz et al. 2008). 
Historical changes in LULCC are important for today’s sources and sinks of 
carbon because the emissions of carbon from deforestation are not instanta­
neous. Woody debris generated at the time of disturbance may take decades 
to decompose. Similarly, the uptake of carbon by secondary forests continues 
for decades and centuries after these forests begin to grow. In the absence of 
spatial data on biomass density, the long-term history of LULCC is necessary 
to simulate changes in biomass density resulting from management. The bio­
mass density of forests cleared for agriculture today depends, in large part, 
on how long those forests have had to recover from previous harvests. On 
the other hand, if spatial estimates of biomass density are obtained directly, 
documentation of disturbance history may no longer be required. 

2.4.2	   Other Differences among Estimates of Carbon  
Emissions from Land Use Change 

Besides differences in data used to estimate deforestation rates and car­
bon density, the variability in flux estimates also results from the types of 
land use included. All of the analyses in Figure 2.2 included deforestation, 
either by using satellite data on forest cover or by inferring changes in forest 
area by combining data on the expansion and abandonment of agricultural 
area (cropland and pasture) with information on the distribution of natural 
vegetation. 
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Forest degradation: Some of the estimates in Figure 2.2 also included  forest 
management, wood harvest, or other management practices that change 
the carbon density within forests. The reduction in biomass density within 
forests as a result of land use is defined here as degradation. Logging in 
Amazonia, for example, added 15%–19% to the emissions of carbon from 
deforestation alone (Huang and Asner 2010). For all the tropics, harvests of 
wood and shifting cultivation, together, added 28% to the net emissions cal­
culated on the basis of land cover change alone (Houghton 2010, unpublished 
data). Globally, these rotational uses of land added 32%–35% more to the net 
emissions from deforestation (Shevliakova et  al. 2009). Thus, those analy­
ses that have included wood harvest and shifting cultivation yield higher, 
and presumably more comprehensive, estimates of the net emissions from 
LULCC. 

Indirect anthropogenic effects: While bookkeeping models use rates of growth 
and decay that are fixed for different types of ecosystems, process-based 
models simulate the processes of growth and decay as a function of climate 
variability and trends in atmospheric composition. Because effects are partly 
compensating (e.g., deforestation under increasing CO2 leads to higher emis­
sions because CO2 fertilization increases carbon stocks, but regrowth is also 
stronger as CO2 fertilization has a more pronounced impact on regrowing 
than on mature forest), a CO2 fertilization effect is not likely to be a major 
factor in accounting for differences among emission estimates. In one study, 
the combined effect of changes in climate and atmospheric composition 
increased LULCC emissions by about 8% over the industrial era (Pongratz 
et al. 2009). There are doubtlessly other interactions as well between envi­
ronmental changes and management. These interactions make attribution 
difficult; that is, are the sources and sinks the result of management or the 
indirect effect of environmental change? 

There is another (indirect) effect of deforestation. As forests are lost, the 
sink capacity on land is diminished. This effect has been called the “net land 
use amplifier effect” (Gitz and Ciais 2003) and the “loss of additional sink 
capacity” (Pongratz et al. 2009). In models, the strength of this effect depends 
on the atmospheric CO2 concentration. These indirect effects account for a 
portion of the variability among emission estimates. 

2.4.3 Sources and Sinks of Carbon from Land Use Change 

The sources and sinks of carbon from LULCC are significant in the global 
carbon budget (Table 2.2). Globally, the annual emissions of carbon from 
LULCC were larger than the emissions from fossil fuels until  ~mid  twentieth 
century. Since ~1945, the emissions from fossil fuels have increased 
dramatically, while the emissions from land use have remained nearly 
constant at 1–1.5 PgC yr–1. Thus the contribution of LULCC to  anthropogenic 
carbon emissions has varied from about 33% of total emissions over the last 
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150 years (Houghton 1999) to about 12% in 2008 (van der Werf et al. 2009). 
The declining fraction is largely the result of the accelerated rise in fossil 
fuel emissions. 

It is important to note that these emissions from LULCC are net emissions. 
They include both sources and sinks of carbon from land use—sources when 
forests are converted to croplands or pastures and sinks when forests regrow 
following harvest or following abandonment of croplands or pastures. In 
fact, the gross sources and sinks from land use and recovery are two to three 
times greater than the net source (Richter and Houghton 2011). The error 
associated with the net flux of carbon from LULCC is thought to be ±0.7 PgC 
yr–1 (Le Quéré et al. 2009). 

It should be clear that the net flux of carbon from LULCC is not equivalent 
to the “emissions of carbon from deforestation,” although the terms are used 
interchangeably in the literature. The former includes other forms of manage­
ment besides deforestation, for example, degradation of forests. Further, the 
net flux of carbon from LULCC includes sources and sinks of carbon from 
nonforests. Cultivation of prairie soils, for example, results in a loss of soil 
carbon unrelated to forests. Over the last 150 years, forests accounted for 
between 84% and 96% of the annual net flux from LULCC. The fraction has 
varied through history; in recent decades forests have accounted for 90%–95%. 

2.4.3.1 Land Use Change in Tropical Forests 

Recall that managed forests were not included in the forest inventories of 
the tropics (Section 2.3). The net carbon balance for managed forests was 
determined by simulating LULCC, specifically deforestation for crops, pas­
ture, and shifting cultivation; reforestation following abandonment of these 
land uses; and harvest of wood products (Houghton 2010, unpublished data). 
LULCC in the tropics is estimated to have caused a net source of 1.3 (±0.7) 
PgC yr–1 over the period 1990–2007. The gross emissions were 2.9 PgC yr–1 

(from deforestation and harvests); gross uptake in secondary forests aver­
aged 1.6 ± 0.5 PgC yr–1 (Table 2.3). 

2.4.3.2 Land Use Change in Boreal and Temperate Zone Forests 

The forest inventories of boreal and temperate zone forests included both 
managed and unmanaged forests and thus provide enough information to 
determine the net effect of forests in the carbon cycle. This inventory-based 
estimate of flux is very different from the flux determined from analysis 
of LULCC. The net sink obtained from forest inventories was 1.22 PgC yr–1 

over the period 2000–2007 (Table 2.3). In contrast, the net sink obtained from 
LULCC was nearly zero (a net sink of 0.04 PgC yr –1), with gross emissions of 
1.52 PgC yr–1 and a gross sink of 1.56 PgC yr–1 (Houghton 2010, unpublished 
data). The major reason for the large difference in the two estimates of the 
sink, aside from errors, is believed to be that forests are accumulating carbon 
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in response to environmental changes, and these environmental responses 
are not included in Houghton’s (2010, unpublished data) bookkeeping model 
(see Section 2.5.1.2). 

2.4.3.3 Global Summary of LULCC 

The world’s forests were a net sink of 1.1 PgC yr–1 over the period 2000–2007 
(Pan et al. 2011) (Table 2.3). This net sink includes a source of 1.3 PgC yr–1 

from deforestation and harvests (LULCC) and a sink of 2.4 PgC yr–1 mea­
sured in forest inventories. These estimates yield a balanced global carbon 
budget. The net terrestrial sink (1.3 PgC for the period 1990–2009) is approxi­
mately equal to the net sink in forests (1.1 PgC yr–1). 

The gross uptake of carbon by the world’s forests was estimated by Pan 
et al. (2011) to be 4.05 ± 0.67 PgC yr–1 (2.41 in intact forests and 1.64 in managed 
forests in the tropics). But this estimate of a gross uptake is an underestimate 
because the sink of 1.22 PgC yr–1 in temperate zone and boreal forests is a 
net sink, not a gross sink. Adding the gross uptake in these forests, obtained 
from LULCC (Houghton 2010, unpublished data), yields a gross uptake of 
5.61 PgC yr–1 (4.05 + 1.56) for the world’s forests. 

2.5 Global Carbon Cycle Revisited: Residual Terrestrial Sink 

The source of carbon from LULCC explains a part of the net terrestrial carbon 
flux and, thereby, helps define a different residual terrestrial flux (Figure 2.3). 
Figure 2.3 is similar to Figure 2.1 except the net terrestrial flux of Figure 2.1 
has been broken into a net flux from land use change (always a net source 
historically) and a terrestrial residual flux. The residual flux is calculated 
by difference, just as the net terrestrial flux was calculated by difference in 
Figure 2.1. It is noteworthy that the net terrestrial flux and the LULCC flux 
were approximately equal before ~1925. Before this date the LULCC flux was 
the net terrestrial flux. Only in recent decades has there been another ter­
restrial sink unexplained by LULCC. It should be recognized that terrestrial 
carbon models calculate an annual carbon sink consistent with the sink calcu­
lated by difference (Le Quéré et al. 2009). Differences among estimates for the 
future, however, suggest that those models are not reliable enough to predict 
the future terrestrial carbon sink/source (Cramer et al. 2001; Friedlingstein 
et al. 2006). 

In sum, forests account (1) for 90%–95% of the net emissions from LULCC 
and (2) for nearly all the residual terrestrial sink (Pan et  al. 2011). Thus, 
forests are important, both as a source of carbon to the atmosphere from 
human activity and as a sink for carbon through natural processes not 
entirely understood. Obviously, forest management can be used, and is, to 
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FIGURE 2.3 
Annual sources (+) and sinks (–) in the global carbon budget. The terrestrial flux is partitioned 

into a flux from land use change and a residual terrestrial sink. 

accumulate carbon on land (the gross sink from LULCC, globally, is about 
3 PgC yr–1) (Richter and Houghton 2011), but the emissions from deforestation 
have dominated the effects of management to date. 

2.5.1 What Explains the Residual Terrestrial Sink? 

The residual terrestrial sink incorporates all of the errors from the other 
terms in the global carbon budget and has an error on the order of 1 PgC yr–1. 
The analysis of data from forest inventories suggests a net sink of 2.4 PgC yr–1 

over the period 1990–2007 that was presumably driven by some combination 
of processes, some already considered in analyses of land use change and 
others not considered. The sections below consider potential carbon sinks 
driven by processes not yet included in analyses of land use change. 

Aside from cumulative errors, the residual terrestrial sink may be attrib­
uted to two types of explanations: (1) omissions of management practices 
from analyses of LULCC and (2) factors other than management that affect 
terrestrial carbon storage. 

2.5.1.1 Management Effects Not Included in Analyses of Land Use Change 

Before discussing aspects of management that may account for the residual ter­
restrial sink, it is important to recall that the residual flux does not include the 
sinks of carbon in forests regrowing as a result of direct activity (logging, aban­
donment, etc.). These sinks are part of the global carbon source from LULCC. 

Management activities not included in analysis of land use change 
(e.g., use of fertilizers in forest management) may have increased the storage 
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of carbon on land. Two other examples are given below. To the extent these 
processes are important, they would decrease the net source calculated from 
land use change and, thereby, decrease the residual terrestrial sink, as well. 
A third example increases estimates of both terrestrial fluxes. 

Aquatic transport: Erosion and redeposition of carbon: One uncertainty with 
respect to changes in soil carbon with cultivation concerns the fate of car­
bon lost from soil. A 25%–30% loss of carbon from the top meter in the years 
following cultivation has been observed repeatedly (Post and Kwon 2000; 
Guo and Gifford 2002; Murty et al. 2002) and is generally assumed to have 
been released to the atmosphere. However, some of it may have been moved 
laterally to a different location (erosion). Much of the transported carbon 
may be released to the atmosphere through subsequent decomposition, 
either during transport or once incorporated in sediment. If so, the loss of 
carbon was counted in analyses of land use change. However, if the organic 
carbon settles in anaerobic environments and decomposition is inhibited, 
the carbon will be sequestered, at least temporarily. 

The carbon discharged to the oceans is only a fraction of the carbon enter­
ing rivers from terrestrial ecosystems by way of soil respiration, leaching, 
chemical weathering, and physical erosion. Although most of the carbon is 
released to the atmosphere in transport, as much as 0.6 PgC may be buried 
in the sediments of floodplains, lakes, reservoirs, and wetlands (Berhe et al. 
2007; Tranvik et al. 2009; Aufdenkampe et al. 2011). If the sink includes some 
of the observed loss of carbon from the top meter of soil, then the emis­
sions of carbon to the atmosphere from land use change have been overes­
timated. The estimated sink from erosion/deposition is large, responsive to 
both land use change and changes in climate, and ought to be considered in 
the global carbon balance. Furthermore, this buried carbon is important as 
a potential source of methane. Freshwater ecosystems release an estimated 
0.1 PgC yr–1 as methane. The carbon emissions are small, but the radiative 
emissions are enough to account for 25% of the estimated terrestrial sink 
(Bastviken et al. 2011). 

Woody encroachment: Another possible explanation for the residual sink is 
“woody encroachment.” The expansion of trees and woody shrubs into herba­
ceous lands, although it cannot be attributed definitively to natural, indirect 
(climate, CO2), or direct effects (fire suppression, grazing), is, nevertheless, 
happening in many regions. Scaling it up to a global estimate is problemati­
cal, however (Archer et al. 2001), in part because the areal extent of woody 
encroachment is unknown and difficult to measure. Also, the increase in 
vegetation carbon stocks observed with woody encroachment is in some 
cases offset by losses of soil carbon (Jackson et  al. 2002). Finally, woody  
encroachment may be offset by its reverse process, woody elimination, an 
example of which is the fire-induced spread of cheatgrass (Bromus tectorum) 
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into the native woody shrub lands of the Great Basin in the western United 
States (Bradley et al. 2006). 

The net effect of woody encroachment and woody elimination is, thus, 
uncertain, not only with respect to net change in carbon storage, but also 
with respect to attribution. It may be an unintended effect of management, or 
it may be a response to indirect or natural effects of environmental change. 

Emissions from draining and burning of peatlands: Not all of the processes left 
out of analyses of land use change would reduce the net carbon source if they 
were included. Some processes act to increase the emissions and increase the 
residual terrestrial sink as well. One such process is the draining and burn­
ing of tropical swamp forests for the establishment of oil palm plantations 
in Southeast Asia. This use of land is thought to add 0.3 PgC yr–1 to the net 
emissions of carbon from land use change (Hooijer et al. 2010). The elevated 
carbon emissions from these and other wetlands have not been included in 
global estimates of emissions from land cover change. 

2.5.1.2  	Indirect and Natural Effects (Processes Not 
Directly Related to Management) 

Two other processes besides the direct effects of management (LULCC) 
account for changes in terrestrial carbon storage: indirect effects (rising con­
centrations of CO2, deposition of reactive nitrogen, climate change) and natu­
ral effects, including changes in disturbance regimes (Marlon et al. 2008). 

Effects of CO2, N deposition, and climate change on carbon storage of forests 
(indirect anthropogenic effects): Three environmental factors are generally 
thought to explain increases in plant productivity and, thereby, carbon 
storage: CO2 fertilization, nitrogen deposition, and changes in climate 
(Schimel 1995). Increased concentrations of CO2 are thought to have caused 
increased biomass density in tropical forests (Lewis et al. 2004). Nitrogen 
deposition is believed to be especially important in the northern mid 
latitudes (Thomas et al. 2010). And changes in temperature and moisture 
are important, particularly through earlier and longer growing seasons. 
Competition among these factors to explain the residual terrestrial sink 
has existed for nearly as long as the sink has been recognized. The relative 
strengths are unknown. 

Changes in disturbance regimes: Natural disturbance regimes (including recov­
ery) may themselves change over decades or centuries, causing carbon to 
accumulate during some periods and to be lost during others (Marlon et al. 
2008; Wang et al. 2010). A reduction in disturbances over the last decades 
may have shifted more forests to a phase of recovery with attendant sinks. It 
must be noted, however, that in many regions the effects of climate change 
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(droughts and fires) appear to have caused additional carbon to be lost rather 
than accumulated (Gillett et al. 2004; Westerling et al. 2006; Kurz et al. 2008). 
Apparently the increased releases of carbon from fires, storms, diseases, and 
logging are offset by regrowth or enhanced growth elsewhere. 

2.5.2 Sources and Sinks of Carbon in the Net Residual Terrestrial Sink 

Like the net source of carbon from LULCC, the residual terrestrial sink is also 
a net sink, including both sources and sinks of carbon. Its existence today 
does not imply that it will continue to grow, or that it will continue at all. 
Model experiments suggest that the drying effects of a warmer climate may 
cause dieback of tropical forests in Amazonia (Cox et al. 2000), a  prediction 
looking more reasonable after two 100-year droughts occurred there in the 
last decade (Phillips et al. 2009; Lewis et al. 2011). In boreal forests, too, not 
only have fires increased in recent decades (Stocks et al. 2003; Kasischke and 
Turetsky 2006; Westerling et al. 2006), but the productivity of the forests, at 
first observed to have increased, has declined since ~1990 (Goetz et al. 2007), 
most likely in response to drought stress. And an unusually large fire in the 
Alaskan tundra (Mack et  al. 2011) may foreshadow increased sources of 
carbon from those ecosystems too. 

2.5.3 Is the Residual Terrestrial Sink Changing? Or Will It Change? 

Remarkably, the proportions of anthropogenic carbon emissions (fossil fuel 
and land use change) taken up by the atmosphere, oceans, and land have 
changed little in the last 50 years. In other words, the annual accumulations 
of carbon on land and in the oceans have increased in proportion to emis­
sions. Over the years 2000–2009, the annual emissions from fossil fuels and 
land use change accumulated in the atmosphere (~47%), the oceans (~26%), 
and land (~27%) (Table 2.2). There is little sign of any saturation of these 
sinks. Some scientists argue that the airborne fraction (the increase in the 
atmosphere divided by total emissions) has increased slightly, suggesting 
that the sinks may be beginning to saturate (Canadell et al. 2007; Le Quéré 
et al. 2009), but others argue that that increase cannot be observed against 
the year-to-year variability in the airborne fraction and the uncertainty of the 
land use flux (Knorr 2009). 

There are other problems with interpreting the airborne fraction. Changes in 
the airborne fraction may be influenced by the nonlinear responses of oceanic 
uptake to changes in the rate of emissions (Gloor et al. 2010). The  oceanic sink 
is not determined by a single carbon reservoir that mixes infinitely fast, as 
assumed in the linear analyses. Rather, variations in the “CO2 sink rate,” if 
calculated with a single-box model, will result from variations in the growth 
rate of the sources, with no change in the rate constants of ocean mixing. The 
land and ocean sinks may, indeed, be slowing, but  demonstrating it through 
observations of the airborne fraction will be difficult. 
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2.6 	  Which Sources and Sinks of Carbon  

Are Observable from Space? 

Data from satellites have been used successfully to measure changes in forest 
area, but it has been more difficult to determine from satellite data alone 
whether those changes are anthropogenic or not, and, if they are, whether 
they represent a land cover change (e.g., conversion of forest to cropland) or 
a land use (logging and subsequent recovery). 

Aside from changes in forest area, however (and changes in area are the 
changes that involve the greatest changes in carbon), there are other issues 
that need attention. This chapter concludes with a discussion of three  
questions: 

r� Can changes in terrestrial carbon be measured from space? 

r� Can the net carbon balance of terrestrial ecosystems be more easily 
measured if sources and sinks are unevenly distributed? 

r� Can losses and gains of terrestrial carbon be attributed to direct 
management, as opposed to indirect environmental effects? 

2.6.1 Can Changes in Terrestrial Carbon Be Measured from Space? 

For aboveground woody biomass, although different methods have yielded 
wildly different estimates for large regions in the past (Houghton et al. 2001), 
new satellite-based methods look promising (Hall et al. 2011; Le Toan et al. 
2011). Mapping change in biomass density over large regions is in its infancy, 
and testing maps over large areas remains a challenge, but instruments com­
ing online will most likely enable measurements at higher and higher spatial 
resolutions. The new study by Baccini et al. (2011) represents a step in this 
direction. 

In contrast to aboveground biomass, changes in belowground carbon 
stocks, woody debris, and wood products will have to be modeled, but the 
good news is that changes in aboveground biomass account for ~90% of the 
net carbon flux (2000–2009), while changes in soil carbon, wood products, and 
woody debris account for only 20%, 10%, and 0% of the net flux, respectively 
(Figure 2.4). The sum is more than 100% because during this interval carbon 
accumulated in wood products, while it was lost from biomass and soils. 

Large, rapid changes in aboveground biomass are more easily observed 
than small, slow changes. This observation means that satellites are biased 
toward detecting deforestation while missing the slower rates of accumula­
tion of biomass during growth. 

The existence of delayed fluxes implies that methods for estimating flux 
must include data on historical land cover activities and associated informa­
tion on the fate of cleared carbon. Such historical data are not included in all 
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FIGURE 2.4 
Average annual flows of carbon (PgC yr–1) in the world’s terrestrial ecosystems as a result of land 

use change over the period 2000–2009. The sum of exchanges with the atmosphere is equiva­

lent to the sum of changes in the four pools (a flux of 1.1 PgC yr–1 from land to atmosphere). 

analyses, especially in those using remote sensing data where information is 
available only since the 1970s at best. How far back in time does one need to 
conduct analyses in order to estimate current emissions accurately, or, alter­
natively, how much are current emissions underestimated by ignoring legacy 
fluxes? Ramankutty et al. (2007) explored these questions using a sensitivity 
analysis of Amazonia. Their “control” study used historical land use informa­
tion beginning in 1961 and calculated annual fluxes for the period 1961–2003. 
When they repeated the analysis ignoring historical land use prior to 1981, 
they underestimated the 1990–1999 emissions by 13%; when they repeated it 
ignoring data prior to 1991, they underestimated emissions by 62%. However, 
if more of the cleared carbon was burned and less decayed, the underesti­
mated emissions were reduced to 4% and 21%, respectively. 

In another analysis of deforestation and reforestation in Amazonia, 
Houghton et al. (2000) found that the annual emissions of carbon from accu­
mulated wood products and slash were three to four times higher than the 
annual emissions from burning. The legacy from secondary forests was 
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also large in this analysis, accounting for an annual sink as large as the 
annual source from burning. Sources and sinks of carbon from changes in 
above ground biomass are amenable to measurement. Sources from accumu­
lated wood products or downed woody debris will require historical infor­
mation and modeling. 

2.6.2	   Can the Net Carbon Balance of Land Be More Easily  
Measured if Sources and Sinks Are Unevenly Distributed? 

In the worst case, the net terrestrial sink is distributed evenly over the land 
surface and, thus, is so small per hectare that it would to be impossible to mea­
sure. On the other hand, many disturbances involve changes large enough to 
be observed remotely. Furthermore, the gross fluxes from disturbance and 
recovery are two to three times greater and thus more readily identified 
than the net source/sink (Richter and Houghton 2011). Several recent stud­
ies suggest that changes in forest biomass are more frequent than generally 
expected. More than half of the hectares of an old-growth tropical forest in 
Costa Rica, for example, showed (with airborne lidar) either losses or gains 
of carbon over 7 years (Dubayah et al. 2010), and a recent study with Landsat 
showed that small gaps associated with tree falls in Central Amazonia were 
numerous enough to account for an area equivalent to 40% of that region’s 
annual deforestation (Negrón-Juárez et al. 2011). 

These results on the one hand, raise the hope that change may be more 
common, and thus more readily detected and measured, than expected. That 
is, the net terrestrial sink is not distributed evenly over the land surface. On 
the other hand, the errors associated with the more easily measured sources 
and sinks may make estimation of a net global change no more accurate than 
it would be if the change were evenly distributed over the terrestrial surface. 
Furthermore, the recent examples of fine-scale changes in carbon density 
may be no more than “noise” in longer term trends or large-area averages. 
Changes might be better observed over large regions using coarse resolution 
imagery, sampled with high-resolution lidar, for a more accurate estimate 
of average change. If the goal is to understand individual trees in a stand, 
coarse resolution would, of course, not be appropriate. 

2.6.3	   Can Losses and Gains of Terrestrial Carbon Be  
Attributed to Direct Management, as Opposed  
to Indirect Environmental Effects? 

Besides the policy reasons for distinguishing direct anthropogenic effects 
from environmental effects, the scientific reason for attribution is to bet­
ter understand the current global carbon cycle and to better predict future 
changes. One goal is to understand the individual processes responsible for 
what is now referred to as the residual terrestrial flux. The global carbon  
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budget has advanced from recognizing a single net terrestrial flux of carbon 
(Figure 2.1) to recognizing two terrestrial fluxes: an LULCC flux and a resid­
ual terrestrial flux (Figure 2.3). Both of these net fluxes can be further divided, 
for example, into gross fluxes or into different causal mechanisms. Changes 
driven by natural disturbances and recovery (structural changes) are clearly 
different from changes driven by enhanced or retarded growth rates (meta­
bolic changes). Some will lend themselves to observation from space; others 
will remain in the residual category until models are good enough or data 
are specific enough to enable additional distinctions. 
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CONTENTS 

3.1 	Introduction 

As presented in Chapters 1 and 2, forests provide crucial ecosystem  
 services. In this respect, it is important to tackle the technical issues sur­
rounding the ability to produce accurate maps and consistent estimates  
of forest type, location, area, condition, and changes in these factors at  
scales from global to local. Remotely sensed data from earth observing  
satellites are crucial to such efforts. Recent developments in regional and  
global monitoring of tropical forests from earth observation have profited  
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immensely from changes made to the data policy and conditions of data 
access imposed by major providers of imagery from earth observing 
satellites—changes that have made access to suitably processed imagery 
far easier, far cheaper, and far more wide reaching in terms of both geo­
graphic coverage and time. On July 23, 1972, the United States launched 
Landsat 1. This civilian polar-orbiting imaging satellite carried a four-
channel multispectral scanner (MSS), which provided images suitable for 
many forest mapping applications. Its successor is still flying on the quite 
remarkable Landsat 5. We thus have an unbroken record of observations 
stretching back over almost four decades. 

Imaging sensors on earth observing satellites measure electromagnetic 
radiation (EMR) reflected or emitted from the Earth’s surface and use these 
measurements as a source of information concerning our  planet’s physical, 
chemical, and biological systems. Satellites in geostationary orbit provide 
frequent images of a fixed view of one side of Earth (as often as every 
15 minutes in the case of Europe’s Meteosat second-generation  instruments), 
while those in polar orbits, like Landsat, image the entire planet’s  surface 
every day or every couple of weeks or so, depending on the spatial 
characteristics of the sensor; images with detailed spatial measurements 
(1–30  m) are  usually only available once or twice a month—for example, 
Landsat 5 and 7 (both still flying at the time of writing) image every 16 days 
at 30 m resolution, while coarser resolution imagery (e.g., the MODerate 
resolution Imaging Spectroradio meter [MODIS] sensor on Terra at 250 m or 
the SPOT satellites’ VGT sensor at 1 km) is provided every day. Most  satellite 
sensors record EMR beyond the sensitivity of the human eye-measurements 
in the near and shortwave infrared wavelengths, for example, help differenti­
ate between vegetation types and condition; shortwave and thermal infrared 
wavelengths are essential for mapping and monitoring forest fires; and 
measurements in the microwave wavelengths (from imaging radar  systems) 
can even “see” through clouds. 

Because the information is captured digitally, computers can be used to pro­
cess, store, analyze, and distribute the data; and because the information is an 
image captured at a particular time and place, it provides a permanent record 
of prevailing environmental conditions. As the same sensor on the same plat­
form is gathering the images for all points on the planet’s surface, these mea­
surements are globally consistent and  independent—important attributes 
where monitoring, reporting, and verification (MRV) linked to  multilateral 
environmental agreements, such as the UN Framework Convention on 
Climate Change (UNFCCC) or the Convention on Biological Diversity, are 
concerned. 

Earth observation from space has become more widely accepted and 
widely adopted as well as technologically more and more sophisticated. 
The latest systems launched, such as the Franco-Italian Pleiades system 
(the first of which was launched December 17, 2011), combine very high 
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spatial resolution (70 cm) with a highly maneuverable platform, capable of 
providing an image of any point on the surface (cloud cover permitting) with 
a 24 h revisit period. Earth observation from space has also become more 
important due to the significant impact that modern human civilization is 
having on the Earth—over 7 billion people are putting relentless pressure 
on our planet, and the forests are certainly feeling this. Forty years ago, the 
United States was largely the only source of imagery—today there are more 
than 25 space-faring nations flying imaging systems. In 1972 Landsat 1 was 
the only civilian satellite capable of imaging Earth at a level of spatial detail 
appropriate for measuring any sort of quantitative changes in forests—today 
there are more than 40 satellites on orbit that can provide suitable imagery 
(or at least they could, if they had a suitable data acquisition, archiving, 
processing, access, and distribution policy). This chapter introduces the use 
of earth observation technology to monitor forests across the globe. 

3.2 Scope of the Book 

Monitoring forest areas on anything greater than local or regional scales 
would be a major challenge without the use of satellite imagery, in 
particular, for large and remote regions. Satellite remote sensing  combined 
with a set of ground measurements for verification plays a key role in 
determining loss of forest cover. Technical capabilities and statistical tools 
have advanced since the early 1990s, and operational forest monitoring 
systems at the national level are now a feasible goal for most developing 
countries in the tropics (Achard et al. 2010). Improved global observa­
tions can support activities related to multilateral environmental agree­
ments, such as the Reducing Emissions from Deforestation and Forest 
Degradation (REDD)-plus readiness mechanism of the UNFCCC. While 
the primary interest of countries in forest cover monitoring would occur 
at national or subnational levels, global or pan-tropical monitoring can 
contribute through (1)  identifying critical areas of change, (2) helping to 
establish areas within countries that require detailed monitoring, and (3) 
ensuring consistency of national efforts. The main requirements of global 
monitoring systems are that they measure changes throughout all forested 
area, use consistent methodologies at repeated intervals, and verify results. 
Verification is usually a combination of finer resolution observations and/ 
or ground observations. 

This chapter provides an overview of operational remote sensing 
approaches used to monitor forest cover over large areas. Many methods 
of satellite imagery analysis can produce adequate results from global 
to national scales. One of the key issues for forest cover monitoring is 
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that satellite data need to be interpreted (digitally or visually) for  forest 
cover change, i.e., focusing on the interdependent interpretation of 
multi temporal imagery to detect and characterize changes. Four general 
remote  sensing–based approaches are currently used for capturing forest 
cover trends: 

1. Statistical sampling designed to estimate deforestation from mod­
erate spatial resolution imagery from optical sensors (typically 
10–30 m resolution). 

2. Global land cover mapping and identification of areas of rapid forest 
cover changes from coarse spatial resolution imagery from optical 
sensors (typically 250 m to 1 km resolution). 

3. Nested	 approach with coarse and moderate spatial resolution 
imagery from optical sensors, i.e., analysis of wall-to-wall coverage 
from coarse-resolution data to identify locations of large deforesta­
tion fronts for further analysis with a sample of moderate spatial 
 resolution data. 

4. Analysis of wall-to-wall coverage from moderate spatial resolution 
imagery from optical or radar sensors. 

The use of moderate-resolution satellite imagery for the historical 
assessment of deforestation has been boosted by changes to the policy that 
determines access and distribution of data from the U.S. Landsat archive. 
In the 1990s, the National Aeronautics and Space Administration (NASA) 
and the U.S. Geological Survey (USGS) developed a global dataset from the 
Landsat archives. Initially known as the GeoCoverTM program, this became 
the Global Land Survey (GLS) and provided free and open access to selected 
scenes covering the whole surface of the planet making up the specific 
epochs (1990, 2000, 2005, and 2010) for the program. The GLS database is 
described in Chapter 4 together with the freely available complementary 
database of coarse-resolution MODIS imagery. In December 2008, the U.S. 
government revised its Landsat data policy and released the entire Landsat 
archive at no charge. Together the GLS and the U.S. open access data policy 
mean that anyone interested in global forest monitoring now has access to 
an archive of data spanning four decades and covering most points on the 
Earth’s surface multiple times over this period. This powerful resource is 
now being used for statistical sampling on a global scale. The statistical 
sampling strategies for the use of moderate-resolution satellite imagery are 
described in Chapter 5. The technical details of the most prominent forest 
ecosystem monitoring approaches are provided in Chapters 6 through 
14. Finally, Chapter 15 covers the use of synthetic aperture radar (SAR) 
technology and Chapter 16 gives some perspectives of future satellite 
remote  sensing imagery and technology. 

The content of the book is introduced briefly hereafter. 
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3.3 	 Use of Moderate Spatial Resolution Imagery 

Nearly complete pan-tropical coverage from the Landsat satellites is 
now available at no cost from the Earth Resources Observation Systems 
(EROS) Data Center (EDC) of the USGS. A recent product, called the GLS, 
was derived by reprocessing GeoCover data, a selection of good quality, 
orthorectified, and geodetically accurate global land dataset of Landsat 
MSS, Landsat TM, and Landsat ETM+ satellite images with a global 
coverage, which was created by NASA for the epochs of the mid-1970s 
at 60 m × 60 m resolution and ca. 1990, ca. 2000, mid-2000s, and ca. 2010 at 
28.5 m × 28.5 m resolution. 

These GLS datasets play a key role in establishing historical deforesta­
tion rates, although in some parts of the tropics (e.g., Western Colombia, 
Central Africa, and Borneo) persistent cloud cover is a major challenge to 
using these data. For these regions, the GLS datasets can be complemented 
by remote sensing data from other satellite sensors with similar characteris­
tics, in particular sensors in the optical domain with moderate spatial reso­
lution (Table 3.1). The GLS datasets are described in full detail in Chapter 4. 

3.4 	 Sa mpling Strategies for Forest Monitoring  

from Global to National Levels 

An analysis that covers the full spatial extent of the forested areas with 
moderate spatial resolution imagery, termed “wall-to-wall” coverage, is 
ideal, but is certainly challenging over very large, heterogeneous areas and 
has commensurate constraints on resources for analysis. China’s Institute 
for Global Change Studies at Tsinghua University and the National 
Geomatics Center of China have recently completed a first global wall­
to-wall map at 30 m resolution, though this ground-breaking new map 
is still under validation. For digital analysis with moderate-resolution 
satellite images at pan-tropical or continental levels, sampling is, as of 
today, still the norm. Several approaches have been successfully applied 
by sampling within the total forest area so as to reduce costs of and time 
spent on analysis. A sampling procedure that adequately represents 
deforestation events can capture deforestation trends. Because deforesta­
tion events are not randomly distributed in space, particular attention is 
needed to ensure that the statistical design is adequately sampled within 
areas of potential deforestation (e.g., in proximity to roads or other access 
networks) using high-density systematic sampling when resources are 
available. The sampling strategies for forest monitoring from global to 
national levels are described in Chapter 5. 
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TABLE 3.1 

Availability of Moderate Resolution (20 m × 20 m–50 m × 50 m) Optical Sensors 

Resolution and 

Nation Satellite/Sensor Coverage Feature 

United States Landsat 5 TM 

United States Landsat 7 ETM+ 

United States/ Terra ASTER 

Japan 

India IRS-P6 LISS-III 

China/Brazil CBERS-2 HRCCD 

United Kingdom UK-DMC 

France SPOT-5 HRV 

Spain/United Deimos-1 and 

Kingdom UK-DMC2 

Japan ALOS AVNIR-2 

30 m × 30 m
 

180 km × 180 km
 

30 m × 30 m
 

180 km × 180 km
 

15 m × 15 m
 

60 km × 60 km
 

23.5 m × 23.5 m 

140 km × 140 km 

20 m × 20 m 

113 km swath 

32 m × 32 m
 

160 km × 660 km
 

5 m × 5 m/
 

20 m × 20 m
 

60 km × 60 km
 

22 m × 22 m
 

640 km swath
 

10 m × 10 m
 

70 km × 70 km
 

This satellite offered images 

every 16 days to any 

satellite receiving station 

during its 27-year lifetime 

It stopped acquiring 

images in November 2011 

On May 31, 2003, the failure 

of the scan line corrector 

resulted in data gaps 

outside of the central 

portion of images 

(60 km wide) 

Data are acquired on request 

and are not routinely 

collected for all areas 

Used by India for its forest 

assessments 

Experimental; Brazil uses 

on-demand images to 

bolster coverage 

Commercial (DMCii); Brazil 

uses alongside Landsat 

data. Full coverage of 

sub-Saharan Africa 

acquired in 2010 

Commercial; Indonesia and 

Thailand use alongside 

Landsat data 

Commercial (DMCii); new 

version of UK-DMC; 

launched in July 2009 

Launched in January 2006. 

Global systematic 

acquisition plan 

implemented 2007–2010. 

Stopped in April 2011 

For the Forest Resources Assessment 2010 programme (FRA 2010), the Food 
and Agriculture Organisation of the UN (FAO) has extended its monitoring 
of forest cover changes at global to continental scales to complement national 
reporting. The remote sensing survey (RSS) of FRA 2010 has been extended 
to all lands. The survey aimed at estimating forest change for the periods 
1990–2000–2005 based on a sample of moderate-resolution satellite imagery. 
The methodology used for this global survey is described in Chapter 7. 



 

 

   

 
 

 
 
 
 
 

 

 

 

Use of Earth Observation Technology to Monitor Forests across the Globe 45
 

3.5 	  Identification of Hot Spots of Deforestation  

from Coarse-Resolution Satellite Imagery 

Global land cover maps provide a static depiction of land cover and cannot 
be used to map changes in forest areas due to uncertainty levels that are 
higher than levels of area changes. However, land cover maps can serve as 
a baseline against which future change can be assessed and can help locate 
forest areas that need to be monitored for change. 

Coarse spatial resolution (from 250 m × 250 m to 1 km × 1 km) satellite 
imagery is presently used for global land or forest cover mapping. In the late 
1990s, global or pan-continental maps were produced at around 1 km × 1 km 
resolution from a single data source: the advanced very high-resolution 
radiometer, or AVHRR sensor (Table 3.2). From 2000 onward, new global 
land cover datasets were produced at similar resolution—1 km × 1 km— 
from advanced earth observation sensors (VEGETATION on board SPOT-4 
and SPOT-5, and the MODIS, on board the Terra and Aqua platforms). These 
products, GLC-2000 (Bartholomé and Belward 2005) and MODIS global 
land cover product (Friedl et al. 2010), allowed for a spatial and thematic 
refinement of the previous global maps owing to the greater stability of 

TABLE 3.2 

Main Global Land Cover Maps Derived from Remote Sensing Data from 
1 km × 1 km to 300 m × 300 m Spatial Resolution 

Map Title Domain Sensor Method 

IGBP Discover Global 

1 km 

NOAA-AVHRR 12 monthly vegetation indices from 

April 1992 to March 1993 

University of 

Maryland (UMD) 

Global 

1 km 

NOAA-AVHRR 41 multitemporal metrics from 

composites from April 1992 to 

March 1993 

TREES Tropics 

1 km 

NOAA-AVHRR Mosaics of single date classifications 

(1992–1993) 

FRA 2000 Global 

1 km 

NOAA-AVHRR Updated from the IGBP dataset 

MODIS Land Cover 

Product Collection 4 

Global 

1 km 

TERRA MODIS 12 monthly composites from 

October 2000 to October 2001 

Global Land Cover 

2000 (GLC-2000) 

Global 

1 km 

SPOT-VGT Global 365 daily mosaics 

for the year 2000 

VCF Global 

500 m 

TERRA MODIS Annually derived phenological 

metrics 

MODIS Land Cover 

Product Collection 5 

Global 

500 m 

TERRA MODIS 12 monthly composites plus annual 

metrics—version of year 2005 

released in late 2008 

GlobCover Global 

300 m 

Envisat MERIS 6 bimonthly mosaics from mid-2005 

to mid-2006 
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the platforms and spectral characteristics of the sensors. An international 
initiative was also carried out to harmonize existing and future land cover 
datasets at 1 km resolution to support operational observation of the Earth’s 
land surface (Herold et al. 2006). 

More recently, new global land cover datasets at finer spatial resolu­
tion (from 250 m × 250 m to 500 m × 500 m) were generated from TERRA­
MODIS or ENVISAT-MERIS sensors. The two key products at this scale are 
the vegetation continuous field (VCF) product (Hansen et al. 2005) and the 
GlobCover map (Arino et al. 2008). The MODIS-derived VCF product depicts 
subpixel vegetation cover at a spatial resolution of 500 m × 500 m. The sys­
tematic geometric and radiometric processing of MODIS data has enabled 
the implementation of operational land cover characterization algorithms. 
Currently, 10 years (2000–2010) of global VCF tree cover are now available to 
researchers and are being incorporated into various forest cover and change 
analyses. The 2005 version of the MODIS global land cover product has been 
generated at 500 m × 500 m resolution, with substantial differences from 
previous versions arising from increased spatial resolution and changes 
in the classification algorithm (Friedl et al. 2010). The GlobCover initiative 
produced a global land cover map using the 300 m resolution mode from 
the MERIS sensor onboard the ENVISAT satellite. Data have been acquired 
from December 1, 2004, to June 30, 2006, and then during the full year 2009. 
A global land cover map was generated from these data from automatic 
classification tools using equal-reasoning areas. This product has comple­
mented previous global products and other existing comparable continen­
tal products, with improvement in terms of spatial resolution. These global 
products can also be used as complementary forest maps (Figure 3.1) when 
they do not already exist at the national level, in particular, for ecosystem 
stratification to help in the estimation of forest biomass through spatial 
extrapolation methods. 

Static forest cover maps are particularly useful as a stratification tool in 
developing sampling approaches for forest change estimation. For such 
purposes, reporting the accuracy of these products is essential through 
the use of agreed protocols. The overall accuracies of the GLC-2000, 
MODIS, and GlobCover global land cover products have been reported at 
68%, 75%, and 73% respectively, though it is important to remember that 
these accuracy figures relate to all classes of land cover—the accuracy 
with which forest cover types are mapped are higher than these overall 
averages. 

A first global map of the main deforestation fronts in the 1980s and 1990s 
has been produced in the early 2000s (Lepers et al. 2005). This map combines 
the knowledge of deforestation fronts in the humid tropics using expert 
knowledge, available deforestation maps, and a time-series analysis of tree 
cover based on NOAA AVHRR 8 km resolution data. In this exercise, the use 
of expert knowledge ensured that areas of major change not detected with 
the satellite-based approaches were not overlooked. More recently, a more 
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detailed quantification of gross forest cover loss at a global scale has been 
produced for the period 2000–2005 from MODIS imagery. MODIS-indicated 
change was used to guide sampling of Landsat image pairs in estimating 
forest extent and loss (Hansen et al. 2010). The MODIS forest cover loss 
mapping method is presented in Chapter 6. 

The Brazilian PRODES monitoring system for the Brazilian Amazon also 
uses a hotspot approach to identify critical areas based on the  previous 
year’s monitoring. These critical areas are priorities for analysis in the 
following year. Other databases such as transportation networks, popula­
tion changes in rural areas, and the locations of government resettlement 
program can be used to help identify areas where a more detailed analy­
sis needs to be performed. Since May 2005, the Brazilian government also 
has been running the DETER (Detecção de Desmatamento em Tempo Real) 
system which serves as an alert in almost real time (every 15 days) for 
deforestation events larger than 25 ha. The system uses MODIS data and 
WFI data on board the CBERS-2 satellite (260 m × 250 m resolution) and a 
combination of linear mixture  modeling and visual analysis. This approach 
is described in Chapter 8. 

3.6 	 N ested Approach with Coarse- and  

Moderate-Resolution Data 

Analysis of coarse-resolution data can identify locations of rapid and 
large deforestation fronts, though such data are unsuitable on their own to 
determine rates of deforestation based on changes in forest area. A nested 
approach in which wall-to-wall coarse-resolution data are analyzed to 
identify locations requiring further analysis with moderate-resolution data 
can reduce the need to analyze the entire forested area within a country. 
Coarse-resolution data have been available from the MODIS sensor for no 
cost since 2000 (see Chapter 4 for the description of this dataset). In some 
cases, it is possible to identify deforestation directly with coarse-resolution 
data. Clearings for large-scale mechanized agriculture are detectable with 
coarse-resolution data based on digital analysis. However, coarse spatial 
resolution data do not directly allow for accurately estimating forest area 
changes, given that most change occurs at subpixel scales. Small agricul­
tural clearings or clearings for settlements require finer resolution data (<50 
m × 50 m) to accurately detect clearings of 0.5–1 ha. A nested approach that 
takes advantage of both coarse spatial resolution satellite data and the large 
Landsat data archive to estimate humid tropical forest cover change is pre­
sented in Chapter 6. This method employs a fusion of coarse spatial resolu­
tion MODIS data and moderate spatial resolution Landsat data to estimate 
and map forest cover change as in the studies of Hansen et al. (2008; 2010). 
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Estimates of forest clearing are  generated from the relatively  fine-scale 
resolution Landsat and, through the use of the regression models, can be 
extended to the continuous MODIS data. 

3.7 	 A nalysis of Wall-to-Wall Coverage from Moderate  

Spatial Resolution Optical Imagery 

A few large countries or regions, in particular India, the Congo Basin, Brazil, 
the European Union, the United States, Australia, and the Russian  federation, 
have demonstrated for many years already that operational wall-to-wall 
systems over very large regions or countries can be established based on 
moderate-resolution satellite imagery. 

The use of satellite remote sensing technology to assess the forest cover 
of the whole of India began in early 1980s. The first forest map of the coun­
try was produced in 1984 at 1:1 million scale by visual interpretation of 
Landsat data. The Forest Survey of India (FSI) has since been assessing 
the forest cover of the country on a 2-year cycle. Over the years, there have 
been improvements both in the remote sensing data and in the interpreta­
tion techniques. The 12th biennial cycle has been completed from digital 
interpretation of satellite data collected from October 2008 to March 2009 
by the Indian satellite IRS P6 (sensor LISS III at 23.5 m × 23.5 m resolution) 
with a minimum mapping unit of 1 ha (FSI 2011). The entire assessment 
from the procurement of satellite data to the reporting, including image 
rectification, interpretation, ground truthing, and validation of the changes 
by the state/province forest department, takes almost 2 years. The interpre­
tation involves a hybrid approach combining unsupervised classification 
in raster format and onscreen visual interpretation of classes. Accuracy 
assessment is carried out independently using randomly selected sample 
points verified on the ground (field inventory data) or with satellite data at 
5.8 m × 5.8 m resolution and compared with interpretation results. In the 
last assessment, 4,291 validation points randomly led to an overall accuracy 
level of the assessment of 92%. 

Data fusion approaches are also being employed to produce spatially 
exhaustive, or wall-to-wall, estimates and maps of forest cover clear­
ing within the humid tropics. In the Congo Basin, MODIS and Landsat 
data are used to create time-series multi-spectral composites, forest area, 
and  forest cover change maps of the entire basin at the Landsat scale for 
the years 2000, 2005, and 2010. MODIS data are used to radiometrically 
normalize Landsat data, which are then related to training sites using 
supervised classification algorithms. This approach, which is currently 
being applied pan-tropically, is presented in Chapter 8. 
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Brazil has been measuring deforestation rates in Brazilian Amazonia since 
the 1980s. The Brazilian National Space Agency (INPE) produces annual esti­
mates of deforestation in the Legal Amazon using a comprehensive annual 
national monitoring program called PRODES. Spatially explicit results of the 
analysis of the satellite imagery are published every year (http://www.obt. 
inpe.br/prodes/). The PRODES project has been producing the annual rate 
of gross deforestation since 1988 using a  minimum mapping (change detec­
tion) unit of 6.25 ha, with the release of estimates foreseen around the end of 
each year. This approach is presented in Chapter 9. 

Selective logging and small-scale forest clearing in heterogeneous land­
scapes require data with moderate-to-fine spatial resolution, more complex 
computer algorithms capable of detecting less pronounced differences in 
spectral reflectance, and greater involvement of an interpreter for visual 
analysis and verification. Methods have been developed and applied for 
regional mapping of vegetation type and condition (forest cover, deforesta­
tion, degradation, regrowth) using Landsat imagery in annual time steps 
in the Amazon basin. A review of methods for the monitoring of forest 
degradation is made in Chapter 10. 

Chapter 11 describes the development of two recently released high-
resolution pan-European forest maps produced for the years 2000 and 
2006. The underlying satellite and auxiliary datasets are presented with an 
overview of the methodology and the main processing steps that governed 
their production. Validation, as a most important aspect of applicability, 
receives special attention, and the outlook highlights some aspects, such as 
differences arising from “forest use” versus “forest cover” concepts, which 
are important for prospective users. 

The United States relies on its national forest inventory for domestic and 
international reporting of forest change. The U.S. Forest Inventory and 
Analysis (FIA) program collects data on a set of over 300,000 plots across the 
United States. A range of attributes are collected in addition to stand volume, 
including stand age, species composition, and management practice. Plots are 
resampled on a 5- to 10-year cycle, depending on the state. While FIA is well 
suited for estimating national forest statistics, it is not designed to accurately 
capture local dynamics due to disturbance and other rare events. The desire 
for consistent, geospatial information on forest disturbance and conversion 
has invigorated the application of Landsat-type remote sensing technology for 
forest monitoring in the United States. Recent increases in computing power, 
coupled with the gradual opening of the Landsat archive for free distribution, 
have resulted in researchers undertaking increasingly ambitious programs in 
large-area forest dynamics monitoring. In Chapter 12, several of these efforts 
are described, focusing on national-scale work in the United States. 

Australia has developed a system to account for carbon emissions and 
removals from the land sector, called the National Carbon Accounting System 
(NCAS). A key component of this system is to track areas of land use change. 
The NCAS Land Cover Change Program (NCAS-LCCP) produces fine-scale 
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continental mapping and monitors the extent and change in vegetation cover 
using Landsat satellite imagery from 1972 to 2011 and continues on an annual 
update cycle, making it one of the most intensive land cover monitoring 
programs of its kind in the world. The approach is described in Chapter 13. 

A forest fire monitoring information system (FIRMS) has been devel­
oped for the Russian territory by the Russian Academy of Sciences and is 
run by the Forest Fire Protection Service of the Federal Forest Agency since 
the year 2003. The system covers the entire territory of Russia and provides 
daily information on burned areas in support to fire management activi­
ties and fire impact assessments. Satellite remote sensing technology is the 
main source of data in the system, in particular data from Terra-MODIS and 
Landsat-TM/ETM+ sensors acquired since the year 2000. Three different 
burnt area products are generated: at 1 km resolution, at 250 m resolution, 
and at about 30 m resolution. 

3.8 Forest Monitoring with Radar Imagery 

Optical mid-resolution data have historically been the primary tool for forest 
monitoring. However, SAR provides opportunities for forest mapping and 
monitoring, not least because data can be acquired regardless of sun illumi­
nation and weather conditions, which is particularly relevant in the tropics 
where cloud cover, smoke and haze are prevalent. Through empirical rela­
tionships with SAR data or more complex algorithms based on  polarimetry 
or interferometry, the three-dimensional structure of forests can be retrieved, 
particularly as transmitted microwaves of different frequency and polariza­
tion penetrate through and interact with components of the forest volume 
(e.g., leaves, branches, and/or trunks) and the underlying surface. Changes 
in vegetation cover and structure over time can also be detected and linked 
with the processes of deforestation, degradation, or regeneration. Despite the 
potential of SAR, users are still comparatively few because of the challenges 
in interpreting, processing, and analyzing radar data and until recently, the 
limited availability of consistent radar data at regional to global levels. SAR-
operating space agencies are, however, beginning to acknowledge the data 
problem and, following the example of the global systematic acquisition 
strategy implemented for the Advanced Land Observing Satellite (ALOS) 
Phased Arrayed L-band SAR (PALSAR) through the Kyoto and Carbon 
(K&C) Initiative, are making efforts to ensure regular and systematic acquisi­
tions over large regions as part of forthcoming satellite missions. Whilst SAR 
data are unlikely to fully replace optical sensors in forest monitoring activi­
ties, they provide a useful complementary, supplementary or additional 
resource for monitoring activities. A background to SAR and examples of its 
use for forest monitoring are provided in Chapter 15. 
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3.9 	  Use of Fine Spatial Resolution Imagery  

for Accuracy Assessment 

Whether through wall-to-wall or sample-based approaches, key require­
ments lie in verification that the methods are reproducible, provide con­
sistent results when applied at different times, and meet standards for 
assessment of accuracy. Ground reference data (or information derived 
from very fine spatial resolution imagery that can be considered as being 
surrogate to ground reference data) are generally recommended as the 
most appropriate data to assess the accuracy of forest cover change esti­
mation, although their imperfections may introduce biases into estima­
tors of change. Reporting the overall accuracy (i.e., not only the statistical 
accuracy usually called precision, but also the interpretation accuracy) is 
an essential component of a monitoring system. Interpretation accuracies 
of 80%–95% are achievable for monitoring changes in forest cover with 
moderate-resolution imagery when using only two classes: forest and 
nonforest. Interpretation accuracies can be assessed through in situ obser­
vations or analysis of very fine-resolution airborne or satellite data. While 
it is difficult to verify change from one time to another on the ground 
unless the same location is visited at two different time periods, a time 
series of fine- (to very fine) resolution data can be used to assess the accu­
racy of forest cover change maps. 

A new challenge is to provide a consistent coverage of fine-resolution satel­
lite imagery for global forest cover monitoring, i.e., at least a statistical sample 
or, more challenging, a wall-to-wall coverage. Current plans for the Landsat 
Data Continuity Mission, the launch of which is scheduled for early 2013, 
and the European Sentinel-2, scheduled for mid-2014, will both adopt global 
data acquisition strategies and both (at least at the time of writing) will allow 
free and open access to their data. The finer resolution (from 1 m × 1 m up to 
10 m × 10 m) can be expected to facilitate the derivation of more precise for­
est area estimates and canopy cover assessment and therefore more reliable 
statistical information on forest area changes, in particular, for estimating 
forest degradation and forest regrowth. 
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CONTENTS 

4.1 Introduction 

All land remote sensing data from the U.S. government earth observation 
missions are available to anyone worldwide on a nondiscriminatory 
basis. U.S. missions are global in scope and emphasis and follow practices 
that ensure systematic data acquisition, archiving, and accessibility. This 
chapter focuses solely on data from two U.S. government earth observation 
missions commonly used for global land studies: the Moderate Resolution 
Imaging Spectroradiometer (MODIS) and Landsat sensors. Another U.S. 
mission used for earlier global investigations, the Advanced Very High-
Resolution Radiometer (AVHRR) from National Oceanic and Atmospheric 
Administration (NOAA) polar orbiters, will not be addressed since the end 
of the AVHRR era is imminent. The follow-on to AVHRR, the Visible Infrared 
Imager Radiometer Suite (VIIRS) instrument, is a new earth observation data 
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source launched in late 2011 that will build on the MODIS and AVHRR data 
processing and dissemination models (Justice et al. 2010). 

Acquisition practices determine the amount and extent of global imagery 
available to users. For most U.S. earth observation programs, systematic global 
collection strategies ensure the availability of imagery over time and space. 
NASA, NOAA, and the U.S. Geological Survey (USGS) earth observation 
missions all systematically acquire global data. The NOAA’s AVHRR and 
NASA’s MODIS acquire complete global coverage on a daily basis, and the 
USGS Landsat mission uses the long-term acquisition plan (LTAP) to guide 
the collection of global seasonal coverage (Arvidson et al. 2006). 

However, data can be available yet not practically accessible. If 
data  query and access tools associated with archived data sets are 
inadequate, efficient access to data may be cumbersome and reduce data 
use. Perhaps more significant for global studies is data policy. U.S. earth 
observation policy has long had unrestricted access to imagery. NASA and 
NOAA have historically stressed free and open access to archives, while 
the USGS followed a “cost of filling user request” (COFUR) policy and 
charged per image fees. The cost of those fees has varied over the 40-year 
history of Landsat, with per scene charges for electronic data  ranging from 
a low of $200 per scene to a high of $4400 per scene. For studies spanning 
long temporal periods and/or large geographic areas, the cost of Landsat 
data was too often prohibitive. For Landsat, the cost of scenes made global 
land mapping applications effectively prohibitive for most researchers and 
organizations. Recognizing this limitation, the USGS, with NASA support, 
changed the Landsat data policy in late 2008, and now all Landsat data are 
available at no cost to any user (Woodcock et al. 2008). 

For an earth observation system to enable large-area land cover charac­
terization and monitoring, it must meet certain data requirements. These 
requirements include (1) systematic global acquisitions, (2) available at low 
or no cost, (3) with easy access, and (4) featuring geometric and/or radio­
metric preprocessing. AVHRR data were the first such data sets processed 
to this standard, for example, the Pathfinder (James and Kalluri 1994) and 
global inventory monitoring and modeling studies (GIMMS) data sets 
(Los et al. 1994). The MODIS has advanced this concept through the use 
of a land science team to develop, implement, and iterate standard image 
products (Justice et al. 2010). Data from other coarse spatial resolution sen­
sors such as SPOT VEGETATION also meet the criteria outlined above 
(Maisongrande et al. 2004). For moderate spatial resolution satellite data 
sets such as Landsat, progress in achieving a data policy and processing 
system that fulfills these requirements has been more problematic. Future 
advancement of the earth observation science community will largely 
depend on applying the experiences developed with coarse spatial resolu­
tion data sets to those at moderate spatial resolution. Recent developments 
with Landsat indicate a promising future for global moderate-resolution 
data set availability. 
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4.2 	 C hanging Medium-Resolution Data  

Policies to Enable Global Studies 

The first freely available global coverage of medium spatial resolution imag­
ery was processed by Earth Satellite Corporation as the GeoCover data set 
(Tucker et al. 2004) and more recently augmented and reprocessed by NASA 
and the USGS as the global land survey (GLS) data set (Gutman et al. 2008). 
GeoCover data were first distributed by the Global Land Cover Facility at the 
University of Maryland (http://glcf.umd.edu/) and the USGS, and down­
load volumes demonstrated the high interest in and demand for free moderate 
spatial resolution data over large areas. The GLS data sets currently consist of 
single-best growing season images for decadal and middecadal epochs (1990, 
2000, 2005, 2010) and have been used in a host of large-area mapping projects 
(Hansen et al. 2010; Huang et al. 2008; Masek et al. 2008). 

In the mid-2000s, Brazil’s Instituto Nacional de Pesquisas Espaciais (INPE) 
furthered the medium-resolution free data revolution by announcing that 
all Brazilian Landsat-class imagery would be available at no cost. This was 
the first official government data policy to institute a no-cost provision of 
medium spatial resolution data. The USGS followed suit, and since then, 
other providers are moving to more open pricing models (e.g., the European 
Space Agency for Sentinel-2). The Committee on Earth Observations 
Satellites (CEOS) recently established a data democracy initiative that is 
working toward improving access to earth observations and expanding their 
use through no-cost access to data, improved data dissemination, provision 
of affordable software and other analysis tools, and capacity building. 

The 2008 decision by the USGS to make U.S. held Landsat data available 
to anyone at no cost serves as an example of the impact of a free and open 
data policy (Loveland and Dwyer in press; Wulder et al. in press). Late that 
year, the USGS announced the end of the Landsat data purchase era and 
the beginning of “Web-enabled” access to the USGS Landsat archive. Web-
enabling was a euphemism for making all data available at no cost over 
the Internet. In addition to making data available at no cost, the USGS also 
began providing Landsat data in an orthorectified format. As a result, users 
now receive  application-ready imagery processed to a single format—Level 
1 Terrain (L1T). These changes immediately improved the cost-effectiveness 
and efficiency of most Landsat applications. Additionally, the long-established 
and studied radiometric calibration of Landsat (Chander et al. 2009) ensures 
consistent spectral response across space and through time. 

The response to the Landsat policy change has been significant. Prior to the 
policy change, annual Landsat data sales peaked in 2001 when approximately 
23,000 products were sold. In the first full year that Landsat data were free, more 
than 1.1 million images were distributed, and the following year, the number 
of scenes more than doubled to 2.4 million images and continues to rise. Users 
in more than 180 countries download Landsat data annually. Also noteworthy 
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is that the demand for data from the historical archive increased significantly 
in addition to the demand for newer data. Considering the Landsat 7 ETM+ 
collection, prior to the free-data era, users had accessed approximately 7% of 
the ETM+ archive. Now, more than 65% of the archive has been used. 

The new data policy truly revolutionized the use of Landsat data for 
education, research, and applications, which therefore increased societal 
benefits of the 40-year Landsat archive. With the USGS decision in late-2008 
to make Landsat data available at no cost to users, all major sources of land 
remote sensing data from U.S. government programs are also free. There 
are significant signs that other earth observation data providers are moving 
toward more open, no-cost data policies. 

4.3 MODIS  Data 

Since before its launch, MODIS has had a land science team tasked with gen­
erating data sets that meet the requirements of global land monitoring (Justice 
et al. 1998, 2002). The MODIS land science team is funded by NASA to develop 
and maintain the science algorithms and processing software used to generate 
the MODIS land products and is responsible for coordinating, developing, and 
undertaking protocols to evaluate product performance, both on a systematic 
basis through quality assessment activities and on a periodic basis through vali­
dation campaigns (Masuoka et al. 2010). The MODIS land products are gener­
ated in a gridded format with standard geometric and radiometric  corrections 
and per-pixel quality information (Masuoka et al. 2010; Roy et al. 2002; Vermote 
et al. 2002; Wolfe et al. 1998). The MODIS archive is systematically reprocessed as 
new and improved versions of core land processing algorithms are developed. 

MODIS products, constituting a 13-year record, are available online at dis­
cipline-specific data centers within the NASA Earth Observing System Data 
and Information System (EOSDIS). Portals for searching and downloading 
MODIS land products can be accessed via the Land Processes Distributed 
Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/). The prod­
ucts are also available through science team–led portals. Looking forward, 
the experience and lessons learned from MODIS processing and delivery 
will be a model for global processing of moderate spatial resolution data. 

4.4 Landsat Data 

The USGS at the Earth Resources Observation and Science (EROS) Center 
manages the global Landsat archive. EROS has been the steward of the Landsat 
archive since the first Landsat was launched in July 1972. The EROS archive 

https://lpdaac.usgs.gov
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currently includes over 3 million images with approximately 300 new Landsat 
ETM+ scenes added to the archive every day. The LTAP described previ­
ously is ensuring that seasonal global coverage is systematically acquired and 
added to the Landsat archive. If Landsat 7 continues to acquire data until its 
fuel-based end-of-life in 2017, and when the Landsat Data Continuity Mission 
(LDCM) begins collecting its planned 400 daily global images in January 2013 
(Irons et al. in press), 700 Landsat images per day will be added to the archive. 
This should improve the role of Landsat for global investigations. 

The depth of historical global Landsat coverage varies over the 40-year 
history of the program due to both technical and policy factors. For exam­
ple, the commercialization of Landsat in the 1980s and 1990s resulted in 
a reduction of global acquisitions, and the loss of Landsat 5 data relay 
capabilities restricted TM acquisitions to regions with direct reception 
ground stations. In addition, a significant portion of global Landsat cov­
erage resides in archives controlled by Landsat International Cooperators 
(ICs). Approximately 5 million Landsat scenes are estimated to be in inter­
national archives maintained by the ICs, and perhaps as many as 3 million 
of these scenes are unique and not duplicated in the EROS Landsat archive. 
The IC Landsat collections add significant historical depth and breadth for 
global studies—if the global science and applications user community has 
access (Loveland and Irons 2007). The USGS is working closely with the 
ICs to consolidate as much of these historical holdings as possible into the 
EROS Landsat archive. Most ICs recognize the value of this initiative and 
are strong participants. 

All new and archived USGS EROS Landsat data are available to anyone 
at no cost. In order to provide data for free, EROS simplified and automated 
Landsat product-generation capabilities and data specifications. Using the 
modular Landsat product-generation system (LPGS), when new Landsat 
7 data are received and archived at EROS, an automated cloud cover assess­
ment algorithm computes the percentage of cloud cover for each scene as 
an attribute for inventory metadata. Scenes that are acquired with less than 
60% cloud cover are immediately processed to generate L1T products. The 
processed L1T data are temporarily available in a disk cache for immediate 
download for approximately 90 days before new additions cause the older 
images to “roll off” the disk. However, all 3 million images in the EROS 
archive, regardless of cloud cover, are available “on demand.” In cases where 
the needed data are not immediately available, an on-demand processing 
request can be submitted and when the data have been processed, an e-mail 
is sent to the requestor with a universal resource locator from which to 
retrieve the data. The current processing capacity of LPGS is approximately 
3,500 scenes per day, although as many as 9,000 scenes have been processed 
in a single day. The LPGS will continue to evolve and improve data process­
ing and access as resources allow. 

Landsat L1T data sets provide consistent, orthorectified, and calibrated 
Landsat scenes for users. All EROS Landsat data are calibrated to a common 
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radiometric standard, instrument performance is constantly monitored, and 
scenes are orthorectified to a consistent global set of ground control points 
(Table 4.1). 

Access to both processed and archived Landsat data is available primarily 
through the EarthExplorer and Global Visualization Viewer (GloVis) inter­
faces, both of which can be used to search and query the archive. In addition 
to USGS Landsat holdings, the series of Landsat satellites have also collected 
scenes for locations outside the United States that are not archived or distrib­
uted by the USGS EROS Center (see Figure 4.1 for a map of active Landsat 
ground stations). Landsat ICs also have unique archives containing data that 
are not duplicated in the EROS archive. Landsat scenes from the IC ground 
stations must be ordered directly from the specific station that acquired the 
data. Data prices, formats, and/or processing options may vary according 

TABLE 4.1 

Landsat L1T Product Specifications 

Product type Systematic or precision terrain correction pending availability 

of ground control points 

Pixel size 30 m (TM, ETM+), 60 m (MSS) 

Map projection Universal transverse mercator 

Datum WGS84 

Orientation North-up 

Resampling method Cubic convolution 

Output format GeoTIFF 

Geometric accuracy ~30 m RMSE (United States), ~50 m RMSE (Global) 

FIGURE 4.1 
(See color insert.) Active Landsat ground stations. (More details are  available at http://land­

sat.usgs.gov/about_ground_stations.php.) 

http://www.landsat.usgs.gov
http://www.landsat.usgs.gov
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to the data provider. A complete list of ground stations and Web addresses 
for accessing their Landsat collections is available at http://landsat.usgs.gov/ 
about_ground_stations.php. 

4.5 Accessing Data 

There are a number of interfaces available for accessing MODIS and 
Landsat data. The GloVis is an intuitive, graphical-based tool for satellite 
and other image data products with access to several EROS data collec­
tions (http://glovis.usgs.gov). Through a graphical map display, any area 
of interest can be selected, and all available graphical images matching 
search criteria can immediately be viewed. For Landsat data, it is also pos­
sible to navigate to adjacent scene locations in order to identify additional 
compatible coverage. Controllable criteria include cloud cover limits, 
date limits, user-specified map layer displays, scene list maintenance, and 
access to metadata. An ordering interface allows the no-cost download of 
selected images. 

EarthExplorer provides online search, graphical display, data download, 
and exports of metadata to support users with access to the broader collec­
tion of Earth science data sets within the EROS archive. It is a more complex 
and traditional query tool in comparison to GloVis. However, it offers a 
number of additional capabilities including: 

r� Map viewer for viewing overlay footprints and graphical overlays 

r� Data access tool to search and discover data 

r� Textual query capability 

r� Keyhole markup language (KML) export capability to interface with 
Google Earth 

r� Save or export queries, results, and map overlay for reuse 

r� User authentication service for access to specialized data sets and tools 

A new tool named Reverb is now in operation and is planned as the “next 
generation Earth science discovery tool,” providing a means for discovering, 
accessing, and invoking NASA data products and services (http://reverb. 
echo.nasa.gov). Searches can query by platform, instrument and sensor, or 
specific campaign and can be refined spatially, temporally, or by process­
ing level and product type. Reverb is recommended for accessing MODIS 
data. There is considerable cross-fertilization between the various search 
systems. For example, Reverb can also serve as an interface to other archives, 
including those of Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) and AVHRR. 

http://www.landsat.usgs.gov
http://www.landsat.usgs.gov
http://www.glovis.usgs.gov
http://www.reverb.echo.nasa.gov
http://www.reverb.echo.nasa.gov
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4.6 Conclusion 

U.S. earth observation initiatives are now consistently committed and  managed 
for use in global land studies. Especially critical are the use of systematic global 
acquisition strategies and nondiscriminatory, no-cost access to the acquired 
data. Continuation of these practices and the timely launch of follow-on 
missions are essential next steps in ensuring that current investments in global 
land studies are continued into the future. The launch of LDCM potentially 
extends the Landsat record for another 5–10 years (until 2018–2023), but after 
that no follow-on capability is currently authorized. On the other hand, the 
MODIS record is currently transitioning to the VIIRS era as this next  generation 
of NOAA polar orbiters becomes operational. An operational moderate spatial 
resolution land monitoring program has been proposed, the National Land 
Imaging Program (Office of Science and Technology Policy 2007), but no 
substantive investment made to date for its implementation. 

As moderate spatial resolution data policies and processing mimic those 
of coarser resolution data, new science capabilities will be enabled. The next 
few years are quite possibly going to be Landsat’s “golden years,” the time 
in which the Landsat program achieves its full potential for global studies. 
Free Landsat data, the consolidation of international holdings into the EROS 
archive, the expanded availability of these data in a consistently processed 
format, and new global coverage from Landsat 7 and the LDCM are enabling 
and improving the use of Landsat for global studies. Innovative improvements 
in Landsat data products and delivery systems, such as the Web-Enabled 
Landsat Data (WELD) system developed by Roy et al. (2010), will serve as 
catalysts for improved global use of Landsat. The integrated use of systemati­
cally acquired multiresolution, multitemporal, multispectral global data sets, 
such as MODIS and Landsat, will become a standard scientific practice. 
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Sampling Strategies for Forest Monitoring  
from Global to National Levels 
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CONTENTS 

5.1	 Introduction 

Remote sensing plays a key role in forest monitoring because it offers a 
cost-effective option for frequent observation of vast areas of forest. Forest 
attribute maps derived from remote sensing may be integrated with forest 
inventory data in a variety of ways within a forest monitoring framework 
(Corona 2010). The effective use of remote sensing to produce maps of for­
est attributes has been described and convincingly demonstrated elsewhere 
in this book. These maps serve the critical purpose of providing spatially 
explicit information for forest attributes. The focus of this chapter is not on 
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monitoring forests by complete coverage mapping but on taking advantage 
of remote sensing via a sampling approach to forest monitoring. Whereas it 
is sometimes too costly and time consuming to obtain wall-to-wall coverage 
using the quality of imagery and processing desired for a particular forest 
monitoring objective, sampling provides the opportunity to apply measure­
ment and observation protocols to a much smaller total area, and this may 
allow for the use of very high-resolution imagery or sophisticated classifica­
tion methods that otherwise would not be practical for a complete cover­
age assessment. A sampling-based monitoring framework targets aggregate 
properties such as the total area of forest and the area of forest cover change. 
A traditional intensive ground-based forest inventory approach to forest 
monitoring is another option based on sampling. But in this chapter, remotely 
sensed data, defined as data from sensors placed on aircraft or space-based 
platforms, are assumed to be the basis for forest monitoring. 

Forest monitoring can be applied to a variety of forest characteristics, for 
example forest cover and biomass. In this chapter, the focus will be on monitor­
ing forest cover. The attention to forest cover allows for framing the monitoring 
objective as an area estimation problem, an objective commonly addressed in 
mapping applications using remotely sensed data (Gallego 2004). Area estima­
tion can be approached in two ways. One approach is to compute area from 
a complete coverage map of the target region, for example, using a complete 
coverage map of deforestation to compute the area deforested. Mayaux et al. 
(2005, 374–375) review applications in which global land cover and  forest 
mapping efforts are used as the basis for estimating the area of deforestation. 
The other approach is to estimate the area of deforestation from a sample. 
By requiring information on a smaller subarea of the full region, sampling 
offers  advantages of significant cost reduction (e.g., fewer satellite images or  
fewer people to interpret aerial photographs) and better accuracy of the mea­
surements of area. Mayaux et al. (1998) critique the limitations and practical 
advantages of the two approaches. A further advantage of remote sensing is 
that it offers an option for forest monitoring based on a consistent methodology 
that can allow for more direct regional comparisons, for example, of regional 
rates of forest change than is possible when methods used for monitoring vary 
by region. Hansen et al. (2010) and the FRA 2010 remote sensing survey (Ridder 
2007; FAO 2009) are examples in which regional comparisons have been facili­
tated because regionally consistent sampling and analysis protocols have been 
applied to remote sensing assessments of forest change. 

The area estimation objective highlights a distinction between two com­
mon uses of maps constructed from satellite imagery. The spatially explicit 
information of pattern and location conveyed by a map is critical to some 
applications, whereas in other applications, information aggregated over a 
specified region is sufficient. The latter applications address aggregate prop­
erties such as totals, means, or proportions, for example, area of forest cover, 
proportion of area of deforestation, or total biomass. These aggregate prop­
erties or population parameters can be estimated from a sample. When the 
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objective is to estimate area, a statistical comparison between the mapping 
and sampling approaches can be framed in terms of accuracy and precision. 
Is the map sufficiently accurate to provide valid change estimates (i.e., bias 
attributable to classification error is negligible)? Is the sample-based estimate 
sufficiently precise to provide useful change estimates (i.e., sampling variabil­
ity is small relative to the quantity being estimated)? Stehman (2005) provides 
guidance for evaluating the trade-off between precision (sampling variabil­
ity) and accuracy (measurement or interpretation error) for estimating area. 

Sample-based forest monitoring using remotely sensed data has been suc­
cessfully implemented to provide estimates of forest cover and forest cover 
change over the tropics (e.g., Achard et al. 2002) and global forest biomes (e.g., 
Hansen et al. 2010). The global Forest Resources Assessment (FRA) remote 
sensing survey (FAO 2009) is another recent application of a sample-based 
forest monitoring activity. These successful operational monitoring efforts 
are the outcome of years of research and development probing the question of 
how large-area forest monitoring can be accomplished with the aid of remote 
sensing. The basic theory and methods underlying the sampling approach 
to forest monitoring are reviewed in this chapter. Although much progress 
has been made developing appropriate sampling methods, additional work 
is needed to further refine and understand the methods of current practice 
and to develop new methods for more cost-efficient and accurate forest mon­
itoring using remotely sensed data. The prospects for sample-based forest 
monitoring in the future are discussed in the closing section of this chapter. 

5.2 Fundamental Sampling Concepts and Methods 

In this section, basic concepts and methods of sampling are defined to estab­
lish the context for sample-based forest monitoring. The approach described 
takes a finite population sampling perspective in which the region of interest 
(e.g., a country, a continent, or the forested biomes of earth) is partitioned into 
a set of N nonoverlapping elements or spatial units (e.g., 5 km × 5 km units) 
called the universe. For each element of the universe, one or more attributes 
or measurements may be obtained (e.g., area of forest cover or area of for­
est degradation for each unit). A population will refer to a collection of these 
measurements for all N units of the universe, and a parameter is defined as 
a number that describes an aggregate property of this population (e.g., total 
area of forest cover, or percent loss of forest cover). A sample is a subset of the 
N elements of the universe, and a sample therefore consists of one or more 
such elements. 

Although landscapes are truly continuous, the finite population perspec­
tive usually provides a close approximation to reality. For example, if the 
objective is to obtain the total area of forest for a region, dividing the area 
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into 5 km × 5 km units and summing the forest area over all N such units in 
the region will yield the same total area as a measurement of area from the 
unpartitioned (full) region. Some forest characteristics may be less amenable 
to a sampling approach; for example, certain landscape pattern metrics such 
as contiguity of patches or landscape diversity may not be estimated well via 
a sampling approach (Hassett et al. 2012). But for estimating area and change 
in area, the finite population sampling perspective provides a frequently 
used, familiar approach that is simple, practical, flexible, and effective. 

A sampling strategy consists of three major components: the sampling design, 
response design, and analysis. The sampling design is the protocol by which a 
subset of the universe (i.e., the sample) is selected. For example, the subset could 
be 100 sampling units where each sampling unit is 5 km × 5 km. The response 
design is the protocol for obtaining the measurements of each sampling unit. 
For example, the response design for the objective of monitoring area of forest 
cover would be the protocol implemented to measure the area of forest cover of 
each unit sampled. The protocol may include specification of the imagery to use, 
the classification method applied to the imagery, and the definition of forest. The 
analysis protocol includes the formulas used to estimate parameters of interest 
and the standard errors associated with these estimates. 

5.2.1 Basic Sampling Designs 

Once the region to be monitored has been partitioned into N spatial units or 
elements that constitute the universe, a variety of sampling designs may be 
considered to select the sample. Choosing a sampling design requires three 
main decisions: (1) Will stratification be used? (2) Will the sampling unit be a 
cluster? (3) Will the primary selection protocol be simple random, systematic, 
or something else? The answers to these three questions will determine the 
sampling design. Examples of sampling designs created by different com­
binations of these decisions exist in applications to forest monitoring using 
remotely sensed data (Section 5.3). Considerations influencing each of these 
decisions are briefly reviewed. 

Stratification is the process of grouping the N elements of the universe 
into strata such that each element belongs to one and only one stratum. 
Stratification is generally used for two purposes. If the objectives specify 
reporting forest characteristics by region (e.g., by continent, country, or prov­
inces within a country), strata may be defined by these reporting regions. 
Typically, the sampling design is then developed with the goal of allocating 
the sample such that each stratum has a sufficient sample size to achieve 
acceptable standard errors for estimates of that stratum. Stratification thus 
can be used to avoid the problem that a reporting region that occupies a rela­
tively small proportion of the full area monitored will have too few sample 
units to obtain precise estimates for that region. 

Another use of stratification is to define strata to minimize the standard 
error of an estimate. The optimization is attained by defining strata such 



 

 

  

 

 

 

 

Sampling Strategies for Forest Monitoring from Global to National Levels 69 

that strata means differ from one another and elements within a stratum 
have similar responses. For example, if the objective is to estimate forest 
cover loss, the strata could be advantageously defined by the amount of for­
est cover loss, and strata representing no loss, low loss, moderate loss, and 
high loss may be defined based on the available information of forest cover 
loss for each of the N elements. Stratifying for the purpose of improving 
precision requires that ancillary data related to the response of interest are 
available. For example, Hansen et al. (2010) used complete coverage, MODIS-
derived forest cover loss as ancillary data to define strata related to Landsat­
derived gross forest cover loss, where Landsat-derived loss was the target 
measurement for the assessment. 

A cluster is a group of elements of the universe that is sampled as a single 
entity. For example, the basic element of the universe may be defined as a 
1 km × 1 km unit, and a 10 km × 10 km group of 100 such units could be 
defined as a cluster. A cluster sampling protocol would then be applied to the 
10 km × 10 km cluster units, but the data would be collected at the support of 
the 1 km × 1 km units within a cluster. In the terminology of cluster sampling, 
the 10 km × 10 km unit is labeled a primary sampling unit (PSU) and the 
1 km × 1 km unit is called a secondary sampling unit (SSU). 

Cluster sampling may be implemented as either one-stage or two-stage 
sampling (additional stages are possible but the discussion here will be 
limited to two stages). The first stage of sampling is always a selection of 
PSUs. For one-stage cluster sampling, all SSUs within each sampled PSU are 
observed so only one stage of sampling is used. One-stage cluster sampling 
is thus very similar to defining an element of the universe based on the PSU. 
For example, the 10 km × 10 km units (PSUs) could be considered the ele­
ments of the universe because the 1 km × 1 km units are always selected 
in groups of 100 defined by the PSU. The only difference between a sam­
ple of 10 km × 10 km units and a one-stage cluster sample of 1 km × 1 km 
units grouped into sets (PSUs) of 100 is that for the cluster sample, the data 
would be recorded for each 1 km × 1 km unit within the PSU, whereas this 
measurement on each 1 km × 1 km unit would likely not be retained if the 
10 km × 10 km unit is defined as the element of the universe. 

In two-stage cluster sampling, a sample of SSUs is selected within each  
sampled first-stage PSU. Two-stage cluster sampling is motivated by the rec­
ognition that typically units spatially proximate to each other will have rela­
tively similar values, and this spatial correlation of the sample observations 
will tend to inflate the standard errors of estimates from cluster sampling 
relative to a more spatially dispersed sample of the same size. So instead 
of sampling all SSUs within a sampled PSU, a sample of SSUs is selected  
and the cost and time savings achieved by the lower effort per PSU can be 
allocated to increase the number of PSUs sampled. 

The choice of whether to use clusters is typically driven by cost. When the 
primary data are obtained from remote sensing, the cost of the imagery and 
the time required to obtain and process the imagery are key considerations. 
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For example, if RapidEye imagery is used, the size of the PSU may be defined 
to be a portion of a RapidEye image so that the number of RapidEye images 
that must be purchased is limited. Cluster sampling allows control over the 
spatial distribution of the sample because of the spatial grouping of elements 
into a fixed number of sampled clusters. 

Whether clusters or strata are present, it is necessary to specify a proto­
col for selecting the elements of the sample. For simple random selection of a 
sample size of n sampling units, the sample is selected such that all possible 
sets of n units have the same probability of being selected. For example, if 
the universe is first partitioned into strata and simple random selection is 
implemented in each stratum, the design is called stratified random sam­
pling. For cluster sampling, the simple random selection protocol could be 
used to select a first-stage sample of PSUs, or applied within sampled PSUs 
to select a second-stage sample of SSUs. For a systematic selection protocol, a 
random starting element or location is selected, and the remaining sample 
elements are selected based on their location in a list of all N elements of 
the universe or based on their spatial location relative to the random start­
ing location. Systematic selection can also be applied in combination with 
strata and clusters. For example, if strata are present, the elements sampled 
within a stratum can be selected via the systematic protocol. Similarly, both 
stages of two-stage cluster sampling could be implemented via a systematic 
selection protocol. Some considerations influencing the choice of selection 
protocol are discussed in Section 5.5. 

5.2.2  Inclusion Probabilities and Probability Sampling 

A useful general perspective of sampling design is obtained by focusing on 
inclusion probabilities. An inclusion probability is defined as the probability 
that a particular element of the universe is included in the sample. That is, 
prior to selecting the actual sample, for a given element of the universe, what 
is the probability of that element being included in the sample selected? 
Inclusion probabilities thus inform about the process of sample selection. 
For simple random sampling of n elements from a universe of N elements, 
the inclusion probability is n/N for each element. For systematic sampling 
from a list of N elements, if the sampling interval is K (i.e., select every Kth 
element after a random selection of the first sample element), the inclusion 
probability is 1/K for each element (see Overton and Stehman 1995 for addi­
tional examples). 

Inclusion probabilities play an important role in defining a probability
 sample. Specifically, a probability sample is defined by two conditions: (1) the 
inclusion probabilities for all elements in the sample must be known and 
(2) the inclusion probabilities for all elements of the universe must be greater 
than zero. The rationale for these conditions is explained in Overton and 
Stehman (1995). For this chapter, it suffices to recognize that a probability 
sampling protocol conveys a degree of statistical rigor to the  sample-based 
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estimates and inference. For the basic sampling designs  typically used in 
practice (e.g., simple random sampling, systematic sampling, stratified ran­
dom sampling, and one-stage and two-stage cluster sampling with either 
simple random or systematic sampling for each stage), the inclusion prob­
abilities are known and these designs meet the conditions of probability 
sampling (Särndal et  al. 1992). If the sampling design does not follow a  
standard selection protocol, it is necessary to establish that the protocol 
meets the conditions defining a probability sample. Some practical, but ad 
hoc selection protocols may create very challenging problems for defin­
ing inclusion probabilities, and for very complex selection protocols the 
inclusion probabilities may be intractable. 

5.2.3 Inference 

The process of generalizing from the sample data to describe characteristics 
of the full population is called inference. Clearly, an  understanding of infer­
ence is necessary when a sampling approach to forest  monitoring is used. 
The two approaches to inference most frequently used in finite population 
sampling are design- and model-based inference. The two approaches  differ 
primarily in how uncertainty or variability is represented as determined by 
the definition of the “variable” in each approach. 

In design-based inference, the observations obtained for each element of 
the population are treated as fixed constants and therefore the response or 
observation is not considered a variable. The uncertainty in design-based 
inference is attributable to the randomization determining which elements 
of the universe are selected for observation. It is variation of the estimate 
from sample to sample that is the uncertainty of interest in design-based 
inference, and consequently the sampling design is of paramount impor­
tance. Specifically, for a given universe and sampling design, the sample 
space is defined as the set of all possible samples that could be selected by 
that particular design. For each possible sample from a given population, 
the estimate of the parameter of interest would differ for different samples. 
For example, suppose the target parameter is the area of deforestation over 
a 5-year period. A systematic sample of 10 km × 10 km units is selected  
by randomly locating a grid, with each grid point separated by 250 km. If 
the sample is repeated by a second random placement of the grid, the esti­
mate of deforestation is likely to change. In design-based inference, it is the 
variability of an estimate over all possible samples comprising the sample 
space that characterizes uncertainty. Because the sampling design deter­
mines the sample space, the name “design-based” inference is naturally 
applied. 

For model-based inference, the response observed for each element of 
the population is viewed as a variable, and inference is conditional on the 
sample obtained. For example, the values of a finite population y1, y2, . . . , yN 

are viewed as realizations of the random variables Y1, Y2, . . . , YN. The goal 
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is to estimate some function of all the y’s in the population, h(y1, y2, . . . , yN), 
for example, the mean or total (Valliant et al. 2000, 2). After the sample of n 
elements has been obtained, estimating h(y1, y2, . . . , yN) entails predicting a 
function of the unobserved Y’s. A model is used for this purpose. The model 
typically incorporates an auxiliary variable (denoted x) that is related to Y. 
The model would then include a specification of how the variable Y is related 
to x, this relationship being represented by the model M. For example, the 
model M could be a simple linear relationship between the expected value of 
Y and x, EM(Yi) = βxi (i = 1, 2, . . . , N), with the covariance between the variables 
Yi and Yj specified as covM (Yi, Yj) = σ2xi if i = j and covM (Yi, Yj) = 0 if i ≠ j 
(Valliant et al. 2000, 4). The model and observed sample data are the basis for 
predicting the unobserved Y’s, so the probability model  specified plays a key 
role in model-based inference. An example  applying model-based inference 
is provided at the end of Section 5.4. 

The choice of inference framework impacts sampling design decisions. 
Design-based inference is predicated on the sampling design being a prob­
ability sampling design. Therefore, if design-based inference will be used, 
only probability sampling designs should be considered. Conversely, model-
based inference does not require a probability sample. The model specified 
for model-based inference may take into account the fact that the sample was 
obtained via cluster sampling or stratified sampling, but this would represent 
a model specification choice and not a required dependence of the inference 
on the sample. However, advocates of model-based inference often cite the 
potential advantage that randomization provides to avoid accusations that 
a sample was subjectively chosen to achieve certain outcomes. Model-based 
inference can be conducted with a probability sample, but design-based infer­
ence cannot be conducted unless a probability sampling design has been  
implemented. 

5.2.4 Estimation 

Once the sample has been selected and the data obtained, a variety of esti­
mators may be available to estimate a parameter of interest. For probability 
sampling designs and design-based inference, a general unbiased estimator 
of a population total is the Horvitz–Thompson estimator. Suppose the obser­
vation on element u of the sample is denoted yu and the inclusion probability 
for element u is denoted πu. If Y is the population total (i.e., the sum of yu over 
all N elements of the population), the Horvitz–Thompson estimator of Y is 

where the summation is over the elements of the sample. For example, if 
yu is the area of deforestation for element u and Y is the total area of defor­
estation for the region, then Y can be estimated from a probability sample 
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using the Horvitz–Thompson estimator. For the basic sampling designs 
typically used in practice, the Horvitz–Thompson estimator simplifies to 
a special case formula. For example, for a simple random sample of n ele­

�ments, the estimator simplifies to Y Ny , where y  is the sample mean of 
the response yu, and for stratified random sampling of nh elements from the 
Nh available in stratum h (H strata total), the Horvitz–Thompson estimator 
simplifies to 

where yh is the sample mean in stratum h. 
In most applications, it is possible to obtain an auxiliary variable xu that 

is associated with the response of interest, yu. Such an auxiliary variable 
may be used to advantage to reduce the standard error of the parameter 
estimate. A widely applicable estimator for this purpose is the generalized 
regression estimator (GRE) (see Särndal et  al. (1992, 225) for full details 
of this estimator). More familiar simple estimators such as the ratio and 
regression estimators applied to simple random sampling are special cases 
of this general form. Because the GRE encompasses a variety of models of 
the relationship between the response y and one or more auxiliary vari­
ables, the GRE is almost always better (i.e., more precise) than the general­
ized difference estimator (Särndal et al. 1992, section 6.3). The GRE belongs 
to the class of “model-assisted estimators” (Särndal et al. 1992, 227). These 
estimators employ a model to information in one or more auxiliary vari­
ables to improve precision of estimates, but the estimators are not depen­
dent on the validity of the model, and inference is still design based. 

5.2.5 Desirable Design Criteria 

Choosing a sampling design for forest monitoring using remote sensing 
should be guided by the monitoring objectives and by desirable design crite­
ria specified for a particular application. A list of potential desirable criteria 
follows, but the prioritization of these criteria will be different depending on 
the specific application.

 1.  The sampling protocol satisfies the requirements of a probability 
 sampling design. As previously stated, this criterion is essential to  
support design-based inference, but is optional for model-based  
inference.

 2. The sampling design is easy to implement. Simplicity of design can be 
a major virtue. It is critical that the design is implemented correctly,  
so a simple protocol is advantageous in this regard. Also, a simple  
design is simpler to analyze, as, for example, when using a model-
assisted estimator to improve precision (Section 5.2.4). 
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 3. The design is cost-effective. The rationale for this criterion is obvious 
because a design goal should be to obtain adequately precise esti­
mates (i.e., acceptably small standard errors) for the lowest cost 
possible. Of course, what constitutes “adequate precision” will be 
application dependent.

 4. The sample is spatially well distributed (i.e., spatially balanced). If the 
sample units are spatially dispersed throughout the target region, 
the sample has intuitive appeal and often results in smaller standard 
errors.

 5. The standard errors of estimates resulting from the design are small. In 
design-based inference, this would mean that estimates of the target 
parameter from different samples would be relatively similar.

 6. An unbiased or nearly unbiased estimator of variance is available. This crite­
rion specifies that standard errors quantifying the uncertainty of the 
estimates can be provided without undue reliance on approximations 
other than those related to the need for a large sample size to  justify 
the variance approximation. This criterion becomes  particularly 
relevant when considering the use of systematic sampling because a 
variance approximation will need to be used as an unbiased estimator 
of variance is not available for systematic sampling.

 7. A change in sample size can be accommodated before the full sample has 
been selected. This criterion is valuable because the final cost of com­
pleting the sample data collection is often difficult to predict, so it  
may be necessary to reduce the sample from the initial target size, or 
in rare cases it may be possible to increase the sample size. Budgets 
also sometimes change, and the sample size may need to be reduced 
or increased accordingly.

 8. The design is transparent and familiar to users of the information. This 
criterion may be particularly relevant if nonscientists will be using 
the monitoring results to inform policy decisions. Transparency may 
include information of actual plot locations or specific details of how 
randomization is incorporated into the selection protocol. 

5.3 	  Applications of Sampling to Estimate Forest  

Cover Change from Remotely Sensed Data 

Published studies demonstrating the application of a sampling approach to 
forest monitoring based on remote sensing are reviewed. The review focuses 
on two broad categories: actual applications in which forest monitoring based 
on remotely sensed data has been implemented and evaluative  studies in which 
different sampling design and estimation strategies have been compared. The 



 
 
 
 

 
 
 
 
 

  
 

 
 

  
 
 
 
 
 
 
 
 

 
 

 

 

   

Sampling Strategies for Forest Monitoring from Global to National Levels 75
 

application studies are discussed first, followed by the design evaluation stud­
ies (Section 5.4). The applications are presented in chronological order. 

The United Nations Food and Agriculture Organization’s (FAO) FRA in 1990 
is a landmark application of a sampling approach employing satellite imagery 
to derive estimates of forest change. The FRA 1990 design used 117 Landsat 
scenes as the sampling units (FAO 1996). The design was stratified based on 
three major geographic regions (Africa, Latin America, and Asia) and 10 sub­
regions among the three major regions. The sample size allocated to these 
regions was based on the expected area of deforestation, as predicted for each 
subnational unit based on prevalence of forest, human population size, and per 
capita income. An additional level of stratification (FAO 1996, 8) was based on 
forest cover in Asia and Latin America (>70%, 40%–70%, and 10%–40%, where 
cover was derived from country-specific inventories) and on dominant forest 
types in Africa (forest, woodland, or tree savanna for the three strata). Thus 
both purposes of stratification were accommodated in this design: stratifica­
tion for regional reporting and stratification for minimizing standard errors 
of estimates. Within each sampled Landsat scene, a subsample of points was 
obtained using a 2 km × 2 km grid. The land cover class was interpreted from 
Landsat imagery at each sample point of the dot grid to obtain area estimates 
for each frame or PSU. To assess change in forest cover, the sampling unit  
was defined as “the overlap area of a pair of multi-date Landsat scenes” (FAO 
1996, 7). The FRA 2000 assessment employed the same sample as the FRA 1990, 
with an additional time period included to estimate change from 1990 to 2000. 
This design employs a combination of design elements discussed in Section 
5.2.1. The sampling design may be labeled as a two-stage cluster sample, with 
stratified random sampling used at the first stage to select a sample of Landsat 
scenes (PSUs) and systematic sampling used at the second stage to select 
points (SSUs). 

The TREES II design (Richards et al. 2000) was implemented for estimat­
ing deforestation in the humid tropical forests for the time period 1990–1997. 
This design employed full and quarter Landsat scenes as the sampling units, 
with n = 104 sampled out of a possible N = 740 units. The sampling design 
had five strata based on percent forest cover and percent deforestation within 
each of the 740 units (Richards et al. 2000, 1480). Gallego’s (2005, 370) retro­
spective assessment of the TREES II design concluded that it was statistically 
sound but overly complicated. As a simplification of the TREES II design, 
Gallego (2005) proposed employing stratification to partition variability of 
change (i.e., low and high variation) and selecting sample locations from a 
systematic grid. Similar to the TREES II design, the proposed modification 
is still strongly linked to using Landsat scenes as the basis for defining the 
sampling unit. The study region would first be partitioned by a tessellation 
based on Landsat scenes that accounted for scene overlap. The sample units 
created by this partitioning are unequal in size (area), and Gallego (2005) sug­
gested implementing a design where the units are sampled with probability 
proportional to their area. 



 
 

 
 
 

 
 
 
 
 
 

   

 
 
 

 
 

 
 
 
 

 

 
 

 
 
 

 
 

 
 
 

  

76 Global Forest Monitoring from Earth Observation 

Mayaux et al. (2005) provide a retrospective critique of both the FRA 1990 
and TREES II designs. They suggest that stratified sampling based on forest 
distribution and fragmentation, as determined from coarse-resolution sat­
ellite imagery, should be considered (Mayaux et al. 2005, 382). Knowledge 
of deforestation hot spots should also be used, possibly via stratification, to 
improve precision. Mayaux et al. (2005) proposed a design for future FRA 
global assessments, suggesting a large systematic sample of 10 km × 10 km 
blocks located at the intersections of 1° lines of latitude and longitude. 
This sample would consist of approximately 10,000 sample units. Such a  
design represents a shift from the strong dependence on Landsat images 
of the TREES II and FRA 1990, but as described in Mayaux et  al. (2005), 
it would not incorporate stratification based on the anticipated degree of 
deforestation. 

Hansen et al. (2008) selected a stratified random sample of 18.5 km × 18.5 km 
units to estimate gross forest cover loss during 2000–2005 in the humid 
tropical forest biome. The strata were determined based on MODIS-derived 
forest cover loss for each of the N units, and the estimated gross forest cover 
loss was quantified using Landsat imagery. A similar stratified design 
was implemented in the boreal and temperate forest biomes (Potapov 
et al. 2008) and the dry tropical forest biome (Hansen et al. 2010). The use 
of a common stratified sampling design and Landsat-derived gross forest 
cover loss for all four forested biomes is an example of how application 
of a consistent methodology can facilitate comparisons of rates of change 
at a global scale (Hansen et al. 2010). Hansen et al. (2008, 2010) employed 
a regression estimator (Section 5.2.4) to estimate gross forest cover loss, 
and the reported standard errors from this model-assisted strategy were
 generally small. 

The FRA 2010 remote sensing survey is another example in which the 
consistency of methodology leads to global comparisons of forest change 
uncompromised by confounding differences in methods of measuring forest 
change. The FRA 2010 remote sensing survey is a systematic sample with the 
sample units (10 km × 10 km blocks) centered at the intersections of 1° lines of 
latitude and longitude (Ridder 2007; FAO 2009). Duveiller et al. (2008) report 
results from an intensified FRA sample to estimate forest cover change in  
Central Africa between 1990 and 2000. The sample grid points were located 
at every 0.5° intersection of latitude and longitude, yielding a fourfold 
increase in sample size over the 1° intersection grid. A total of 571 sample 
blocks (10 km × 10 km) were selected, although cloud cover prevented analy­
sis of some sample blocks. The estimates of forest change had reasonably low 
standard errors, demonstrating the operational success of the  methodology 
(Duveiller et al. 2008, table 2). 

Levy and Milne (2004) review sample-based studies for estimating 
afforestation and deforestation in Great Britain. The National Countryside 
Monitoring Scheme (NCMS) of Scottish Natural heritage is a sample of  
487 1 km × 1 km plots, with change interpreted from aerial photographs 
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taken in the 1940s and 1980s. The countryside survey is based on 381 plots, 
also 1 km × 1 km, distributed throughout Great Britain. The countryside 
survey incorporates stratification based on “underlying environmental 
characteristics such as climate, geology and physiology” (Fuller et al. 
1998, 103). 

Leckie et al. (2002) describe a study to report deforestation and its carbon 
consequences for Canada. The sampling design is linked to the ongoing 
Canadian National Forest Inventory sample of 2 km × 2 km photoplots cen­
tered at points on a 20 km × 20 km grid. Stratification by expected deforesta­
tion level is incorporated in the sampling design. In the high deforestation 
strata, the sampling grid is intensified to 10 km  × 10 km to increase the  
sample size. Interpretation of Landsat imagery is proposed to obtain the 
deforestation data. 

Dymond et  al. (2008) employed a stratified sampling design to estimate  
change in forest area between 1990 and 2002 for a portion of the South Island 
of New Zealand. The six strata defined were nonforest no change, two-forest 
no change strata (one for which a spectral difference was noted, the other 
for which no spectral difference was observed), a forest to nonforest change 
stratum, a nonforest to forest change stratum, and a “big clumps” stratum 
that could include to forest or from forest change, with these changes occur­
ring in clumps of 5 ha or more. This “big clumps” stratum was expected to 
contain most of the change that could be identified from Landsat imagery, so 
this stratum was exhaustively sampled (censused). For the other five strata, 
sample points were randomly selected within each stratum. Dymond et al.  
(2008) found that this stratified design was much more efficient than simple 
random sampling. 

To summarize these application studies, a variety of sampling designs 
have proven to be effective for monitoring forest change from remotely  
sensed data. Many of the basic design options described in Section 5.2.1 
have been implemented in practice. Most studies employed a spatial 
sampling unit, with the FRA 1990 design and Dymond et al. (2008) being 
exceptions for which point sampling was implemented (the FRA 1990 
did use a spatial sampling unit at the first stage of the two-stage cluster 
design). The early use of Landsat scenes or quarter scenes as the sam­
pling units has generally been replaced in favor of smaller spatial units. 
Stratification is present in the majority of the designs implemented, with 
the FRA 2010 remote sensing survey being the most notable application 
not using stratification. Two-stage sampling in which the PSU is subsam­
pled was implemented in the FRA 1990 design, but was not present in 
any other design included in this review. Systematic sampling is used at 
some stage of the sampling design in the FRA 1990, FRA 2010, TREES II, 
and the Canadian inventory (Leckie et al. 2002). Simple random selection, 
usually within strata, was used in the applications of Hansen et al. (2008, 
2010), Dymond et  al. (2008), and the surveys of Great Britain (Levy and 
Milne 2004). 
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5.4 Studies Evaluating Sampling Design Options 

As the first noteworthy effort to employ sampling of remotely sensed data 
to monitor forests, the FRA 1990 remote sensing survey triggered a series 
of studies evaluating the effectiveness of sampling for forest monitoring 
using remotely sensed data. An early and influential study by Tucker and 
Townshend (2000) expressed concern that the FRA 1990 sampling approach 
would not yield sufficiently precise estimates of deforestation unless the 
sample size was extremely large. Tucker and Townshend’s (2000) conclusions 
were based on an investigation of deforestation for country-specific estima­
tion for Bolivia, Colombia, and Peru. The populations evaluated were based 
on complete coverage deforestation for these countries. Each country was 
partitioned by Landsat scenes (41, 61, and 45 for Bolivia, Colombia, and Peru, 
respectively), and the variability of sample-based estimates for simple ran­
dom sampling of these scenes was evaluated. Tucker and Townshend (2000) 
found that a large proportion of the available scenes had to be sampled to 
obtain precise estimates of deforestation. Sanchez-Azofeifa et al. (1997) also 
noticed that high variances of deforestation estimates could occur when the 
sampling unit was a satellite scene. Sanchez-Azofeifa et al. (1997) examined a 
population of 202 Landsat scenes from the Brazilian Amazon for which com­
plete coverage change information was available. They demonstrated that a 
stratified design with strata defined by “persistence” improved the precision 
of the sample estimates relative to simple random sampling, where Sanchez-
Azofeifa et al. (1997, 183) defined persistence in terms of “scenes presenting 
some degree of deforestation on time Ti will present more but no less defor­
estation between time Ti and time Ti+1 of total deforestation.” Czaplewski 
(2003) presented evidence to indicate that the problems encountered by these 
studies were diminished when sampling was applied to larger regions, such 
as continental or global estimates of deforestation. 

These early studies initiated a healthy debate of central issues of the sam­
pling approach including the choice of sampling unit and the trade-offs 
between cost and variability of sampling more but smaller sampling units. 
These initial studies focused on Landsat scenes as the sampling unit, but rel­
atively quickly (e.g., Tomppo et al. 2002; Stehman et al. 2003) it became appar­
ent that using such a large sampling unit was a major contributor to the poor 
performance of the sampling approach observed by Tucker and Townshend 
(2000) and Sanchez-Azofeifa et  al. (1997). Tucker and Townshend’s (2000) 
Bolivia population of N = 41 Landsat-based sampling units included one 
unit that comprised 40% of the total deforestation of the region, and four 
scenes accounted for 70% of the total deforestation of Bolivia. Tucker and  
Townshend’s (2000) analysis of the Bolivia population is noteworthy because 
it identified that one or a few units with very high deforestation may occur 
and have substantial impact on the standard error of the sample-based esti­
mate of change. Outliers and their effect on the precision of estimated change 
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is an issue to be taken seriously. The shift to using sampling units smaller 
than Landsat scenes diminishes the impact of such outliers on the precision 
of the area estimates. 

Tomppo et  al. (2002) continued the evaluation of potential designs for 
continental and global forest assessments such as the FRA. Their results 
were based on a meticulously constructed hypothetical population of 
deforestation. Two sizes of sampling units were evaluated: a 150 km × 150 
km sampling unit (corresponding approximately to the area of a Landsat 
image) and a 10 km × 10 km sampling unit. Stratification was implemented 
geographically using 10 FRA ecological zones to control the distribution of 
the sample among zones, and an additional level of stratification was defined 
using the Dalenius–Hodges rule (Cochran 1977) to determine strata bound­
aries based on the continuous variable Advanced Very High Resolution 
Radiometer (AVHRR) change. The sample was then allocated equally to five 
strata created within each geographic stratum. Tomppo et al. (2002) found 
that the 10 km × 10 km unit was more effective than the 150 km × 150 km unit 
when the stratified sampling design was implemented. Further, stratification 
by AVHRR change improved the standard errors of the estimates. 

The planned use of systematic sampling for the FRA 2010 remote sens­
ing survey prompted several studies investigating this design. As noted ear­
lier, the FRA 2010 sampling design is a systematic sample of 10 km × 10 km 
blocks located at the intersections of the 1° lines of latitude and longitude. 
Steininger et al. (2009) evaluated the estimates that would be obtained from 
the FRA 2010 design if that design were to be applied to digital maps of  
deforestation for six regions (the five countries of Bolivia, Colombia, Ecuador, 
Peru, and Venezuela and the Brazilian Amazon) and the area represented by 
all six regions combined. This study also included a comparison of different 
size sampling units ranging from 5 km × 5 km to 50 km × 50 km and investi­
gation of various grid densities (0.25° intersections of latitude and longitude 
up to 2° intersections). Steininger et al. (2009) concluded that the FRA design 
is clearly acceptable at the continental level, but country-specific estimates 
may be problematic. For a fixed sample size, a larger sample unit is obviously 
better, but Steininger et al. (2009) present results that provide insight into the 
trade-offs between smaller standard errors but increasing cost as the area of 
the sampling units increases. 

Eva et al. (2010) conducted a study analogous to that of Steininger et al. 
(2009) to evaluate the performance of the FRA 2010 design estimates when 
applied to French Guiana (1990–2006 change) and the Brazilian Legal 
Amazon (BLA) (2002–2003 change). Again complete coverage deforestation 
information derived from Landsat imagery was the basis for evaluating 
the sample-based estimates. The sampling unit was 20 km × 20 km, and 
the sample size was n = 330 for the BLA. The estimated standard error of 
0.10 million ha (based on nine replicate samples of the 1° intersections of 
latitude and longitude) obtained for the BLA is miniscule relative to the esti­
mate of 2.81 million ha of deforested area. For French Guiana, the systematic 
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sample was intensified to 0.25° grid intersections (a 16-fold increase over the 
standard FRA grid spacing of 1° intersections), resulting in a sample size of 
108 sample units (approximately 12% of the total area), and the size of the 
sampling unit was reduced to 10 km × 10 km. For this intensified sample, the 
estimated standard error was about 6.8% of the estimated area of deforesta­
tion. The design of the Eva et al. (2010) study did not include comparison of 
systematic sampling to simple random sampling, but it can be expected that 
the systematic design improved upon the standard errors that would have 
been obtained from simple random sampling. 

Broich et al. (2009) investigated the relative precision of systematic, strati­
fied random, and simple random sampling using a population of Landsat­
derived 2000–2005 deforestation for the BLA. The strata were based on 
MODIS-derived change for the 18.5 km × 18.5 km units partitioning the 
study region. The systematic sampling design was modeled after the FRA 
2010 design of sampling at 1° intersections of latitude and longitude and  
an intensified version of that design with sampling units at 0.5° intersec­
tions. Broich et al. (2009, table 3 and table 4) found that both systematic and 
stratified sampling were improvements over simple random sampling, and 
both were operationally very effective for estimating deforestation based 
on the standard errors relative to the annual rate of deforestation for the 
study area (population) that was 0.55% (percent of area). The 1° systematic 
sample (325  sample units) yielded a standard error of 0.05%, the stratified 
random sample (150 sample units) yielded a standard error of 0.03%, and 
the 0.5° systematic sample (1,310 sample units) yielded a standard error of 
0.02%. For this particular study, the stratified design was more effective than 
systematic sampling, the advantage being attributable to the effectiveness of 
the MODIS-based stratification. Further investigation would be needed to 
confirm the utility of a similar approach to stratification for other locations 
and different time periods. 

Stehman et  al. (2011) used the same population of deforestation for the 
BLA investigated by Broich et al. (2009) to demonstrate the utility of stratified 
random sampling for adapting a global forest monitoring design to achieve 
regional reporting objectives. The stratified sampling design employed by 
Hansen et al. (2008) for the humid tropical forests could be augmented using 
the same stratified design to address the objective of estimating deforesta­
tion by states within the BLA. The ability to augment a stratified continen­
tal or global sample parallels the use of an intensified systematic sample 
(Eva et al. 2010) to produce country- or region-specific estimates for the FRA 
2010 design. The analyses also permitted comparing the standard errors for 
simple random, systematic, and stratified random sampling for the states 
within the BLA. When compared on the basis of equal sample size, both 
systematic and stratified random sampling were better than simple random 
sampling, and for most states, stratified random sampling had a smaller 
standard error than systematic sampling (Stehman et al. 2011, table  5). 
Similar to the precautions expressed for interpreting the Broich et al.’s (2009) 
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results, the strong advantage gained by the MODIS-based stratification in 
the BLA would not necessarily extend to other  geographic locations or time 
periods. 

These evaluative studies have progressed from the precautionary findings 
revealed by Tucker and Townshend (2000) to strong confirmation that the 
sampling approach can yield estimates with relatively small standard errors. 
However, the sampling design must be chosen based on recognizing some 
of the potential pitfalls, the foremost of which is that very large sampling 
units (e.g., Landsat scenes) should be avoided. The evaluative studies support 
the results of the actual applications (Section 5.3) of sample-based estimates 
of forest change in that the small standard errors observed in practice are 
substantiated by empirical investigation of the sampling designs applied to 
known populations of deforestation. 

The majority of the research examining different sampling design options 
has focused on the basic sampling designs outlined in Section 5.2.1 (system­
atic, stratified random, and cluster sampling). Several designs outside this 
traditional realm have been considered. Magnussen et  al. (2005) evaluated 
adaptive cluster sampling (ACS), a sampling design that is advocated as  
efficient and practical for rare but spatially clustered phenomena, exactly a 
scenario often envisioned for forest cover change. Magnussen et al.’s (2005) 
general recommendation was that “ACS remains attractive when the average 
cost of adaptively adding a PU [population unit] to the initial sample is low 
relative to the average cost of sampling a PU at random.” This condition would 
not be met when working with a satellite scene as the PU. If the PU is smaller 
than a Landsat scene, for example, when using a 10 km × 10 km unit, the  
condition described may be satisfied because if the adaptive procedure calls 
for additional PUs (the 10 km × 10 km units) within a scene in which other 
PUs have been interpreted, this would be less costly than obtaining a new 
PU in a different Landsat scene. Magnussen et al. (2005) expressed several 
additional reservations regarding the use of ACS, noting that practical experi­
ence with ACS is still limited and that design effects (i.e., precision improve­
ments) and costs can be highly variable. They further noted that it is likely 
that a rule for terminating the adaptive selection process would be needed to 
avoid cost overruns (i.e., to avoid uncontrolled progression to selecting new 
sample units from the adaptive steps of the protocol), thus adding complexity 
to the design, and that the effect of population structure on ACS is so complex 
that it is difficult to predict success of ACS for a given application. ACS is 
more  complex to implement and analyze, so the advantages gained must be 
sufficient to overcome this burden of greater complexity. 

When stratified sampling is used to increase the sample size of sampling 
units with anticipated high forest cover change, the design is an example of 
an unequal probability sampling design. That is, the inclusion probabilities 
for units in different strata are different. The extension of unequal probability 
sampling to a design for which the inclusion probabilities are proportional to 
an auxiliary variable x (denoted as πpx designs) is another option to consider. 
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Giree (2011) implemented a πpx design in a study of gross forest cover loss 
in Malaysia, where x was the area of change derived from AVHRR for 1990– 
2000. The rationale for implementing a πpx design instead of a stratified 
design was related to the options for estimation (Section 5.2.4). A special case 
of the general regression estimator applicable to a stratified random design is 
the separate regression estimator, and this estimator requires a sample size 
of 25–30 per stratum to ensure that the estimator is not biased. Because the 
sample size for the entire Malaysia study was a modest n = 25 units (each 
18.5 km × 18.5 km), a stratified design combined with the separate regression 
estimator would have been a risky proposition. The πpx design allowed the 
option to use the auxiliary variable x to increase the sample size of higher 
change units, and the general regression estimator could still be applied to 
the sample of 25 units without concern for bias attributable to a small sample 
size. For the πpx design implemented and using the Horvitz–Thompson esti­
mator (Equation 5.1), Giree (2011) estimated the annual gross forest cover loss 
for Malaysia during 1990–2000 to be 0.43 million ha per year with a standard 
error of 0.04 million ha per year. Thus despite the small sample size, the πpx 
design yielded a reasonably small standard error relative to the estimated 
rate of deforestation. 

The sample obtained by Giree (2011) is useful to illustrate the application 
of model-based inference. Suppose that Yi is the area of deforestation for 
1990–2000 obtained from Landsat and xi is the area of deforestation obtained 
from AVHRR on unit i (where each unit is 18.5 km × 18.5 km). The AVHRR 
value (xi) is available for all N = 958 units comprising Malaysia (i.e., the entire 
population), but the Landsat deforestation is available for only the n = 25 
sample blocks selected by the πpx design described in the preceding para­
graph. Following Valliant et al. (2000, section 5.5.1), suppose that the model 
relating Yi to xi is a quadratic model of the form 

2 2where ei is distributed with mean 0 and variance vi = xi σ . The predicted 
value for unit (block) i, i = 1,..., N ,  is 

where the estimates of the β’s are obtained by least squares. If s denotes the 
elements selected for the sample and r denotes the remaining (not sampled) 
elements in the population, the model-based estimator for the population 
total (based on the model specified above) is 

T =∑Yi +∑Y� i 
s r 

The estimator T does not take into consideration that the sampling design was 

πpx and instead is entirely dependent on the specified model. The “prediction
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theory” basis of the estimator is also apparent because the second term of 
T is a sum of the predicted values of Yi for the elements of the population that 
were not observed in the sample. For the Giree (2011) sample data for 1990– 
2000 deforestation in Malaysia, the model-based estimator is 0.35 million ha 
per year (slightly below the 0.43 million ha per year for the design-based esti­
mate). The standard error for the model-based estimate was 0.07 million ha 
per year (based on the specified model and equation 5.1.6, p. 130 of Valliant 
et  al. 2000). Although it is tempting to compare the standard errors of the  
design-based and model-based estimators, the two approaches to inference 
employ very different definitions of variability, and it does not seem relevant 
to compare variances that constitute very different representations of uncer­
tainty. In practice, the analysis using a model-based estimator should include 
evaluation of competing models and an assessment of the goodness of fit 
of the data to model assumptions. These details are omitted for reasons of 
brevity. 

5.5	  Disc ussion of Sampling Applications  

and Evaluative Studies 

Several general tendencies emerge from this review of applications and eval­
uative studies of forest monitoring sampling designs for remotely sensed 
data. The degree to which the sampling design is tailored to the spatial char­
acteristics of the satellite imagery ranges from a strong dependence in which 
Landsat scenes or quarter scenes are used as the sampling units (Richards 
et al. 2000; Tucker and Townshend 2000; Czaplewski 2003; Gallego 2005) to 
virtually no dependence on the imagery for defining sampling units (Leckie 
et al. 2002; Levy and Milne 2004; Mayaux et al. 2005; Hansen et al. 2008, 2010). 
Gallego (2005) notes that choosing the size of the sampling unit to corre­
spond to the specific imagery to be used to interpret forest cover or change is 
justified when working with sensors with approximately fixed image frames 
(e.g., Landsat TM), but otherwise becomes more complicated. In a long-term 
monitoring program, or in cases where several sources of imagery might be 
used, the advantages of choosing the sampling unit linked to a single imag­
ing framework are diminished. 

For studies covering continental or global change, an initial stratifica­
tion by biomes, ecoregions, or other large areas is typically implemented, 
although the FRA remote sensing survey is a notable exception. Geographic 
strata are typically meaningful regions for reporting results, and they also 
serve to aggregate relatively homogeneous forest types together, which may 
be advantageous for better precision of continental or global estimates of 
change. In most of these studies targeting the objective of estimating the 
area of forest change, stratification based on a proxy or surrogate for true 
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change must be used. The goal is to create strata in which change is relatively 
uniform within each stratum, thus creating smaller within-stratum vari­
ances. Stratification also allows for increasing the sample size in the higher 
variability strata. 

Many of the desirable design criteria specified in Section 5.2.5 are promi­
nent in the sampling designs implemented in practice for forest monitor­
ing using remotely sensed data. All of the sampling designs reviewed in 
this chapter satisfy the conditions defining a probability sampling design. 
This noteworthy feature suggests that the importance of rigorous design-
based inference combined with a probability sampling design has been 
recognized at the design planning stage. Most of the applications reviewed 
met the second desirable design criterion of being simple to implement. The 
two most commonly used sampling designs, systematic (e.g., the FRA 2010 
design) and stratified random (e.g., Dymond et al. 2008; Hansen et al. 2008, 
2010), are straightforward to implement. The two examples of more com­
plex sampling designs presented in this chapter were ACS, investigated by 
Magnussen et al. (2005), and sampling with probability proportional to an 
auxiliary variable x, where x could be a measure of forest cover loss from 
coarser resolution imagery (Giree 2011) or x could simply be the area (size) 
of each element in the partition of the universe (Gallego 2005). A majority 
of the designs reviewed included some capacity for distributing the sample 
spatially (criterion 4), either by implementing a systematic selection protocol 
or by incorporating geographic stratification. The sampling designs imple­
mented in practice (Section 5.3) produced standard errors that were small  
enough that the estimates would likely be viewed as credible for most uses 
of the estimates (criterion 5). 

An unbiased estimator of variance is not available for systematic sampling, 
and the estimated variance is then based on an approximation (desirable 
design criterion 6). A simple approximation is to use a variance estimator 
appropriate for simple random sampling, and this approximation is typi­
cally a biased overestimate of the variance for the systematic design. Such 
an overestimate of variance is often acceptable because it is conservative (i.e., 
it does not under-report the uncertainty of the estimate), but a conservative 
estimate also will not reflect the true precision of the estimate. Thus it may 
be that systematic sampling has produced a very precise estimate, but the 
estimated standard error, being a conservative overestimate, will not reflect 
that precision. Stratified random sampling does permit an unbiased estima­
tor of variance. 

Most sampling designs can be implemented in a manner that will allow 
for changing the sample size “in progress” (criterion 7). Simple random and 
stratified random protocols are particularly easy to truncate to reduce the  
target sample size or extend to increase the target sample size while still  
maintaining the fundamental features of the design (Stehman et al. 2011). 
Intensifying a systematic sample is straightforward simply by changing 
the grid density (e.g., decreasing the distance between grid points by half 
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increases the sample size fourfold). Less severe changes in sample size will 
require breaking up the strict grid structure. For example, to add 10 new 
sample units, the original grid spacing could be halved and 10 units selected 
at random from the introduced new grid points. To reduce the sample size 
from the initial grid, sample units could be randomly deleted, although this 
assumes that the existing sample up to the point of sample termination had 
been selected in a random order. Both of these sample size modifications of 
a systematic grid will produce a final sample that does not adhere exactly to 
the initial full grid structure and will therefore diminish some of the advan­
tages of the systematic sample. 

The last desirable design criterion, “transparency,” is difficult to assess 
because it depends on individual experience with sampling methods 
and theory. The designs implemented in practice for forest monitoring 
(Section  5.3) are probability sampling designs, which conveys a strong 
element of transparency to the process if one is familiar with the theory of 
design-based inference and estimation. Systematic sampling is intuitively 
appealing and therefore transparent to nonscientists because of the uniform 
spatial  distribution of the sample across a region and because of the obvious 
explanation for why sample points are located where they are. A probability 
sample based on simple random selection may be misconstrued by layper­
sons as having been subjectively selected to focus on specific locations to  
bias the results in a particular fashion. Similarly, intensifying the sampling 
effort within some strata may be misunderstood by laypersons as an effort to 
increase the sample size within areas of high deforestation, thus “obviously” 
biasing the estimates in the minds of those not aware of the weighted esti­
mation approaches required with unequal probability sampling designs (see 
Equations 5.1 and 5.2). It is an interesting question of how individual percep­
tions (e.g., various levels of understanding of sampling theory and practice) 
should influence the decision-making process when considering different 
sampling design options for a given application. 

5.6 	 Sa mpling for Forest Monitoring Using  

Remotely Sensed Data: A Look Ahead 

Despite past operational successes of remote sensing–based forest moni­
toring using a sampling approach, much room for improvement exists to 
develop more accurate, more precise, and more cost-effective methods. One 
of the biggest concerns with forest monitoring by remote sensing is mea­
surement error—are the remote sensing measurements of forest attributes 
such as cover or deforestation sufficiently accurate? Measurement error can 
be viewed as having two components: bias and variability. Measurement 
bias refers to a consistent over- or under-representation of the true value 
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of the response, and measurement variability refers to the differences in 
the observed response over multiple replications of the measurement pro­
cess (Särndal et  al. 1992). For example, if the area of deforestation for a 
10 km × 10 km unit is obtained by a human interpreter working with satel­
lite imagery or aerial photographs, we can envision replicated realizations 
of this measurement by different interpreters. If the average result of these 
repeated observations of deforestation differs from the true value of the 
unit, measurement bias is present. If the repeated observations vary from 
interpreter to interpreter, measurement variability is present. It is straight­
forward to quantify measurement variability by having different interpret­
ers examine the same sampling unit, but it is less obvious how to quantify 
 measurement bias. 

A fundamental premise of the sampling approach to forest monitoring 
is that the best available protocols for obtaining the target forest measure­
ments are being used. The assessment of measurement bias would require 
that a more accurate measurement protocol existed, and that it would be 
possible to estimate measurement bias based on what would likely be a 
relatively small sample (i.e., if a larger sample size using the more accurate 
protocol were available, this measurement protocol would be the basis of the 
monitoring estimates). For example, if Landsat is the best-quality imagery 
that can be affordably used in a sample-based monitoring program, then  
it would be possible to spot check the Landsat interpretations using very 
high-resolution imagery and a more detailed (i.e., more accurate) interpreta­
tion  protocol, and this would provide a way to assess measurement bias. 
Specific  sampling designs to incorporate the assessment of measurement 
error have not received much attention. 

Another challenging question is how to construct the sampling design 
for long-term forest monitoring based on remotely sensed data. A number 
of factors play into this decision. Over time, it is possible that improved 
methods (e.g., better imagery, more accurate classification methods) will be 
developed for measuring the forest characteristics of interest. The sampling 
design should be able to incorporate these improved options. For example, 
if new sources of imagery prove to be better, the sampling design must be 
able to accommodate a potential change in the footprint of different imagery. 
A good illustration of this problem is the early emphasis on using Landsat 
scenes as sampling units. Even if these large sample units had proven to be 
effective for use with Landsat, it is likely that smaller sampling units would 
now be more desirable for the very high-resolution imaging options that sub­
sequently have become available. 

A number of challenging questions remain to be resolved regarding the 
three primary decisions that determine a sampling design (Section 5.2.1). 
Consider the cluster sampling decision first. The primary advantage of 
cluster sampling is the savings in time and cost of working with a sample 
that is spatially constrained in the sense that the sample may be controlled to 
fall within a fixed number of clusters or PSUs. When working with a specific 
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source of imagery, cluster sampling allows for controlling the number of 
images that must be processed (e.g., a Landsat or an IKONOS image). Gallego 
(2012) demonstrated that sampling a relatively small number of SSUs within 
each PSU is adequate from the standpoint of statistical precision, and little 
advantage is gained by one-stage cluster sampling. The qualitative nature of 
Gallego’s (2012) result is not surprising, but the quantitative revelation that 
such a small number of SSUs would generally be adequate is eye opening. 
Gallego’s (2012) result suggests that two-stage cluster sampling should be  
given serious consideration. One-stage cluster sampling may still be a good 
design option for other reasons (e.g., when landscape pattern and other 
landscape context information is desirable), but two-stage sampling is clearly 
a strong option when estimating area is the primary objective. 

Although stratification has been demonstrated to be effective for estimating 
area (Tomppo et al. 2002; Broich et al. 2009; Stehman et al. 2011), the precau­
tions noted about the portability of these results to other regions for which 
forest change dynamics may be different should be heeded. In a long-term 
forest monitoring setting, the benefit of stratification would almost surely 
diminish over time. However, it may still be worthwhile to include stratifica­
tion simply because estimating a relatively rare event such as change with 
acceptably small standard errors may be difficult otherwise. If the monitoring 
is retrospective (e.g., estimating forest change from 1980 to 2010), then even 
though multiple time periods of change may be of interest (e.g., every 5-year 
period), it may still be possible to develop an effective stratification based on 
change throughout the full monitoring period. Because archival imagery and 
other information exist pertaining to changes that have taken place, it is pos­
sible to stratify by change based on auxiliary information. In the design of a 
forward-looking (prospective) monitoring program, the ability to choose an 
effective stratification may become more tenuous. In the prospective setting, 
the strata must be defined by expected change if the sample data must be  
obtained in real time (i.e., when it is not feasible to use archival imagery). 

For long-term monitoring with periodic reporting (e.g., 5-year time peri­
ods), the question of permanent sample plots versus allowing the sam­
ple locations to change over time is another important consideration. For 
example, if estimates are desired for each 5-year period over a 30-year total 
period of monitoring, sample locations will need to be paired (i.e., the initial 
and end date) for any given 5-year period to estimate gross change. But the 
decision of whether to use permanent plots for the entire 30-year monitor­
ing window will depend on the situation. For example, in a region of rapid 
cycling from forest clearing to regrowth to clearing, the 30-year time series 
from permanent plots may prove invaluable. Conversely, in a less dynamic 
region in which at most one change will occur in the 30-year period, it may 
be advantageous to focus more on the individual 5-year estimates. This may 
lead to implementing a stratification that is advantageous for each 5-year  
estimate, but not necessarily a stratification useful for any other time period, 
and consequently a new set of paired plots would be selected for each 5-year 
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period. In a prospective monitoring program, particularly one that may have 
regulatory ramifications, it would be preferable to have the sample locations 
“hidden” from the parties involved so that forest management of the sample 
locations is not different from forest management of the general population. 
However, not revealing sample locations would seem to conflict with the 
desirable design criterion of transparency. Consequently, permanent plot 
locations for prospective regulatory monitoring could be problematic. If new 
sample locations are selected for each reporting interval, these problems 
with permanent plots would be avoided. Sampling design decisions will be 
strongly influenced by practical considerations. Additionally, studies inves­
tigating the precision of permanent sample locations versus more flexible 
sample arrangements should be conducted for various scenarios of forest 
change. 

Two-phase sampling is often an effective design for general-purpose 
monitoring (see Fattorini et  al. 2004 for a specific example application) 
and has a relatively long history of use for forest inventory. In two-phase 
sampling, a large first-phase sample is selected, and one or more auxiliary 
variables are measured for each unit sampled. A second-phase sample is 
then selected, typically from the first-phase sample units, and the target 
measurements are obtained for the smaller second-phase sample. In contrast 
to two-stage cluster sampling in which the sampling units are different sizes 
for the two stages, it will be assumed that the sampling units are defined 
similarly at both phases for two-phase sampling. The auxiliary information 
from the larger first-phase sample may be used in two ways. One option is to 
use the auxiliary variables in a model-assisted estimator. The other option is 
to use the auxiliary information to stratify the first-phase sample units and 
to then select a stratified sample at the second phase. Two-phase sampling 
for stratification is a practical option when it is not feasible to stratify all N 
elements of the universe. 

5.7 Conclusions 

The complete coverage mapping and sampling-based approaches should 
coexist in a forest monitoring program as both approaches address impor­
tant and sometimes different objectives. The full coverage, spatially explicit 
information provided by maps is an invaluable resource. But typically there 
will be higher quality information than what was used to construct the map, 
and this higher quality information becomes affordable and practically 
manageable for only a sample of the full region. Thus a sample in which 
higher quality imagery and more accurate measurement protocols can be 
applied becomes the basis of an estimate for aggregate properties of the forest 
characteristics to be monitored. The sample-based approach to monitoring 
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forest cover and change in forest cover has been proven to be operationally 
effective in a number of studies. Efforts to refine these methods to produce 
more accurate and precise estimates of forest characteristics should continue 
to take advantage of new developments of higher quality imagery and better 
classification methods. 
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6.1 Introduction 

6.1.1 MODIS 

The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor 
onboard NASA’s Terra spacecraft has advanced large-area land monitor­
ing during its 10-plus years of operation. Compared to heritage instru­
ments such as the advanced very high-resolution radiometer (AVHRR) 
meteorological sensor, MODIS represented a significant gain in global 
land mapping and monitoring capabilities. First, the MODIS sensor has a 
finer instantaneous field of view compared to other global daily observing 
systems, including bands with 250, 500, and 1000 m spatial resolutions. 
Second, MODIS was built with seven bands specifically designed for land 
cover monitoring by avoiding wavelengths affected by atmospheric scat­
tering and absorption. Third, the 250 m spatial resolution of the red and 
near-infrared bands was designed specifically to enable the monitoring 
of land cover change (Justice et al. 1998). Other sensors with global land 
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monitoring capabilities, including SPOT VEGETATION and ENVISAT 
MERIS, with 1  km and 300 m spatial resolutions, respectively, have also 
been designed for land monitoring applications. However, MODIS retains 
the finest spatial resolution observational capability for this class of sen­
sors. While a second MODIS sensor onboard NASA’s Aqua spacecraft was 
launched in 2002, MODIS Terra data have been more widely used in land 
cover analyses and are the data used in the study presented here. 

6.1.2 Global Forest Cover Mapping to Date 

A viable solution to examining trends in forest cover change over large areas is 
to employ remotely sensed data. Satellite-based monitoring of forest clearing 
can be implemented consistently across large regions at a fraction of the cost 
of obtaining extensive ground inventory data. Forest inventories are typically 
unable to quantify forest dynamics at annual intervals due to the costs and 
logistical challenges of frequently revisiting plots. On the other hand, remotely 
sensed data enable the synoptic quantification of forest cover and change at 
regular intervals, providing information on where and how fast forest change 
is taking place at annual or finer time scales (INPE 2008). While numerous 
national-scale forest change products exist, global forest change characteriza­
tions are comparatively rare. Initial global forest mapping efforts focused on 
static map products of forest cover, typically as part of multiclass land cover 
classifications. The IGBP DISCover project (Loveland et al. 2000) used 1 km 
AVHRR data to produce a global land cover product that included forest leaf 
type and longevity classes, as did Hansen et al. (2000) with the University of 
Maryland (UMD) land cover map. Friedl et al. (2002) advanced these efforts in 
creating the standard MODIS land cover product (MOD12Q1), and Bartholomé 
et al. (2005) used SPOT VEGETATION data to produce the Global Landcover 
2000 (GLC2000) product, both of which contained multiple forest type/density 
classes. Similarly, the Globcover initiative used 300 m ENVISAT MERIS data 
to produce a global multiforest class land cover map for 2005–2006 (Arino et al. 
2007). Forests as a specific target have been mapped at the global scale as well. 
Global subpixel percent tree cover maps have been generated using AVHRR 
data (Hansen and DeFries 2004) and as a standard product using MODIS 
data, the vegetation continuous field (VCF) of percent tree cover (Hansen et al. 
2003). Regarding global forest change, the 8 km AVHRR Pathfinder data set 
was used to estimate tree cover change from 1982 to 1999 from time-sequential 
percent tree cover maps (Hansen and DeFries 2004). 

6.1.3 Global Forest Cover Loss Mapping Using MODIS 

A more recent global forest cover change assessment employed MODIS data 
to quantify gross forest cover loss (Hansen et al. 2010). In this study, MODIS 
500 m forest cover loss indicator maps were used to stratify biomes into 
homogeneous regions with respect to change (high, medium, and low forest 
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cover loss strata). Within each stratum, samples of Landsat data were drawn 
and analyzed in order to estimate forest cover extent in 2000 and forest cover 
loss from 2000 to 2005. Stratum-specific regression estimators incorporat­
ing the MODIS-derived forest cover loss data as an auxiliary variable were 
applied to generate the final forest cover loss estimates. These results demon­
strated the effectiveness of using the MODIS forest cover loss data to provide 
a spatially fine-grained stratification that offered an improvement over more 
generalized hot spot stratifications subjectively delineated to define low and 
high forest clearing strata (Achard et al. 2002). 

The focus of this study is to extend this previous MODIS work and map 
indicated forest cover loss at 250 m spatial resolution over the 2000–2010 
period. To do so, a turn-key algorithm is run on the 2000–2005 and 2005–2010 
epochs. Previous work on multiyear forest cover change quantification using 
AVHRR data employed a recalibrated model for each year of analysis (Hansen 
and DeFries 2004). However, as MODIS data feature consistent radiometric 
calibration (Vermote et al. 2002), it is expected that the change signal being 
trained upon may be reliably and repeatedly captured over time. Our previ­
ous work with MODIS has employed turn-key models applied annually to 
identify change (Hansen et al. 2008; Potapov et al. 2008). For this study, we 
employ a fixed characterization algorithm for the 2000–2005 and 2005–2010 
epochs. Calibration issues with MODIS have been studied, and a degrada­
tion of the near-infrared band quantified for MODIS Terra (Wang et al. 2012). 

Given this fact, the use of turn-key approaches to repeatedly mapping land 
cover with the Terra instrument has come into question (Vermote E., personal 
communication). We present the following results more as a demonstration 
of global change mapping methods and not as a definitive long-term envi­
ronmental change record. MODIS data are imaged nearly daily at the global 
scale, improving the probability of cloud-free acquisitions. This high-tempo­
ral acquisition frequency ensures a consistent and largely cloud-free image 
feature space at annual time scales. However, the moderate spatial resolution 
of MODIS is a limitation for area estimation of forest cover loss as much forest 
disturbance occurs at sub-MODIS pixel scales. The most appropriate use of 
MODIS for forest monitoring is as an alarm or hot spot indicator (INPE 2008; 
Hansen et  al. 2010; Shimabukuro et al. 2012). Area estimation requires the 
integration of MODIS with a higher spatial resolution sensor, such as Landsat 
or another medium spatial resolution data source. MODIS-only products such 
as the ones presented in this study capture relative rates of forest cover loss 
across space and through time, with a considerable omission rate for small-
scale forest disturbances. 

The method presented here demonstrates a global assessment of forest 
cover loss using MODIS data from 2000 to 2010. For this study, forest clearing 
equals gross forest cover loss during the study period without quantification 
of contemporaneous gains in forest cover due to reforestation or afforestation. 
Forest cover loss is defined as a stand-replacement disturbance of a forest, 
where forest is defined as an assemblage of trees having a height of 5 m or 
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greater and a canopy crown cover in excess of 25% at the MODIS pixel scale. 
The method could be implemented repeatedly for both forest cover loss and 
gain in establishing internally consistent biome-scale trends in both gross 
and net forest cover loss and gain. 

6.2 Data 

The 2000–2011 global Terra/MODIS 250 m data 16-day composite data set 
(MOD44C, collection 5) from the University of Maryland was used. This data 
set was originally created as an input to the vegetative continuous fields and 
vegetative cover conversion product and is described in Carroll et  al. (2010). 
Four reflective bands—band 1/red (620–670 nm), band 2/near infrared (841– 
876 nm), band 6/shortwave infrared (1,628–1,652 nm), and band 7/shortwave 
infrared (2,105–2,155 nm), along with band 31/thermal (10,780–11,280 nm) and 
computed normalized difference vegetation index (NDVI)—were used. 

Six-year MODIS metrics were derived for 2000 through 2005 and 2005 
through 2011. Metrics have been shown to enable large-area mapping by 
generalizing the multispectral feature space, enabling signature exten­
sion over large areas (Reed et  al. 1994; DeFries et  al. 1995; Hansen et  al. 
2005). Each band was ranked individually and by temperature and NDVI. 
Ranked metrics calculated for all bands included 0, 10, 25, 50, 75, 90, and 
100 percentiles. Averages between percentiles were also calculated. Annual 
metrics were generated and used as metrics and as inputs to a time-series 
regression calculation. Means of the three values corresponding to highest 
annual NDVI and band 31 brightness temperature were derived and used as 
the annual inputs and for the regression calculation. 

An extensive Landsat-scale training data set was produced for calibrating 
the algorithm. National-scale products for Indonesia (Broich et  al. 2011); the 
Democratic Republic of the Congo (Potapov et al. in press); European Russia 
(Potapov et al. 2011); Quebec, Canada; and Brazil, along with an additional 203 
image pairs, were used as training data. The majority of the training data were 
from the 2000 to 2005 epoch. Only the Indonesia and Democratic Republic of 
the Congo data included 2005–2010 change data. The Landsat-scale forest cover 
loss maps were aggregated to the MODIS grid as percent forest cover loss. 
A total of over 23,000,000 pixels at MODIS scale were available as training data. 

6.3 Algorithm 

Decision trees are a type of distribution-free machine learning tool appro­
priate for use with remotely sensed data sets (Michaelson et al.  1994; 
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Hansen et  al. 1996; Freidl and Brodley 1997). They are the primary 
algorithmic tool used in the standard MODIS land VCF products (Hansen 
et al. 2003). The VCF products depict the per pixel percent cover of basic 
vegetation traits, such as herbaceous and tree cover. As trees are distribu­
tion free, they allow for the improved representation of training data within 
the multispectral space. The relationship between the independent and 
dependent variables need not be monotonic or linear. This allows for more 
flexible subsetting of the multispectral image space not feasible with many 
other methods and is most appropriate for large-area studies that feature 
complicated multispectral signatures. In addition, the tree structure enables 
the interpretation of the explanatory nature of the independent variables. 

Trees can accept either categorical data in performing classifications 
(classification trees) or continuous data in performing subpixel percent cover 
estimations (regression trees) (Breiman et al. 1984). For this study, we used the 
regression tree algorithm of the S-Plus statistical package (Clark and Pergibon 
1992) to depict percent forest cover loss. Methods to avoid  overfitting of 
tree models are available. One such approach entails  performing multiple, 
independent runs of decision trees via sampling with replacement. This 
procedure is called bagging (Breiman 1996). A 10% sample of the training 
data was used to create each tree, which related the dependent percent forest 
cover loss variable to the set of MODIS-independent variables. Eleven trees 
were generated, and the median percent forest cover loss from all bagged 
trees was retained as the per pixel result. To reduce errors of  commission, we 
thresholded the output product at 30% forest cover loss, converting each map 
to a yes/no forest cover loss estimate per 250 m MODIS pixel. 

6.4 Results 

Figure 6.1 shows a global-scale annual growing season metric derived from 
shortwave infrared, near-infrared, and red growing season imagery from 
2000. The spectral feature space is largely cloud free, but persistent haze 
and partial cloud cover exist in the Andes Mountains of Colombia,  northern 
Brazil, the central African coast along the Gulf of Guinea, and montane 
Borneo and New Guinea (the haze and residual cloud cover are not visible in 
the figure). The humid tropics are the only region where atmospheric effects 
are present in the MODIS metric feature space. Other potential limitations, 
such as seasonal forests and variable growing season length, are not readily 
apparent in the metric feature space. 

Figures 6.2 and 6.3 provide an example of the derived metric feature space 
for an area of Mato Grosso, Brazil, and Quebec, Canada,  respectively. For 
these subsets, blue represents year 2000 growing season band 7  shortwave 
infrared reflectance (mean of the band 7 values corresponding to the three 
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FIGURE 6.2 
(See color insert.) 400 km × 400 km subset centered on 12° 4’ S, 55° 59’ W in Mato Grosso, 

Brazil. False-color composite of MODIS band 7 growing season metrics—blue: 2000 mean band 

7 shortwave infrared reflectance from the three greenest 16-day composite periods, green: dif­

ference in the 2000 and 2005 mean band 7 shortwave infrared reflectance from the three green­

est 16-day composite periods, and red: difference in the 2005 and 2010 mean band 7 shortwave 

infrared reflectance from the three greenest 16-day composite periods. 

FIGURE 6.3 
(See color insert.) 400 km × 400 km subset centered on 51° 45’ N, 72° 8’ W in Quebec, Canada. 

False-color composite of MODIS band 7 growing season metrics—blue: 2000 mean band 7 

shortwave infrared reflectance from the three greenest 16-day composite periods, green: differ­

ence in the 2000 and 2005 mean band 7 shortwave infrared reflectance from the three greenest 

16-day composite periods, and red: difference in the 2005 and 2010 mean band 7 shortwave 

infrared reflectance from the three greenest 16-day composite periods. 



 MODIS/Landsat area = MODIS-indicated change × 0 86  . + 0 68  . 
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greenest 16-day composite periods). Areas that are dark in this metric are typ­
ically forest (water has been masked out prior to analysis). Green represents 
the difference for this metric from 2000 to 2005 and red the  difference from 
2005 to 2010. Pixels that have high increases for this metric, and have an ini­
tial dark state (~<5% reflectance), are likely to represent forest disturbance. 
For the Brazil subset, a dramatic reduction in forest cover loss can be inferred 
from this false-color composite image. The proportion of 2000–2005 change 
dwarfs that from 2005 to 2010. For the Canada subset, a less dramatic reduc­
tion is observed, related to a predominantly fire-driven dynamic. The tree 
bagging algorithm formalized the labeling of all forest cover loss pixels. 

The global total of MODIS hot spot pixels covered 500,000 km2 from 2000 to 
2005 and 360,000 km2 from 2005 to 2010. The total MODIS-indicated forest 
cover loss represents 50% of the total area of gross  forest cover loss from the 
MODIS/Landsat study of Hansen et al. (2010). In other words, the Landsat 
sample-based area estimate of gross forest cover loss equaled 1,011,000 km2, 
while the MODIS hot spot mapped area equaled 500,000 km2. The MODIS-
indicated forest cover loss pixels were  aggregated to the same sampling grid 
as the Hansen et al. study and compared. The following relation yielded an 
r2 of 0.64 and a standard error of 1.73%: 

Areas from the Hansen et  al. (2010) study were reported only for those 
regions or nations that had sufficient Landsat samples to provide a reason­
able uncertainty estimate. These areas included the four major forested 
biomes (humid tropical, dry tropical, temperate, and boreal), all continents 
except Antarctica, and countries with over 1,000,000 km2 of forest cover in 
2000. The gross forest cover loss data from Hansen et al. (2010) are plotted 
against the MODIS-indicated change in Figure 6.4. 

The degree of forest cover loss omission in the MODIS data is clear. As 
stated before, fully half of the global forest cover loss from the Hansen 
et al. (2010) study is not mapped with MODIS. Regardless, there is a strong 
overall relationship. Areas where small-scale disturbance predominates, 
such as Africa, feature the highest proportion of omitted, or cryptic, change. 
In Figure 6.4 the continent of Africa and the nation of the Democratic 
Republic of the Congo have the highest ratio of MODIS/Landsat area 
of forest loss to MODIS-indicated forest loss. This reflects the finer and 
more diffuse  pattern of forest change in Africa where most  clearing is  
performed in swidden  agricultural settings too small for  quantification 
using MODIS data. Areas with large agroindustrial clearing, such as 
Brazil, South America as a whole, and Indonesia, have the lowest omission 
rates. 

The model was applied to the two study intervals, and a comparison of 
the amount of change hot spots was made. Figures 6.5 and 6.6 illustrate the 
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FIGURE 6.4 
Plot of area of MODIS-indicated forest cover loss versus gross forest cover loss area for reported 

regions. (From Hansen, M.C., et al., Proc. Natl. Acad. Sci., 107, 8650, 2010.) 

global distribution of MODIS-indicated forest cover loss. The most obvious 
change in the patterns of forest cover loss is found in Brazil. As Shimabukuro 
et al. (2012) report, the Brazilian government has sought to reduce the clear­
ing of Amazonian forests, efforts that have included the use of satellite data 
as an enforcement tool. The global results from Figures 6.5 and 6.6 confirm 
this reduction. Contrary to this trend is a marked increase in the clearing 
of the Chaco woodlands of Bolivia, Paraguay, and Argentina between the 
two periods. Africa is largely absent of large-scale change, with only the 
agroforestry of South Africa evident at this scale. For tropical Asia, Indonesia 
exhibits a rise in forest cover loss over the study period. Epochal variation at 
higher latitudes is less evident and largely due to variations in high latitude 
fire dynamics as well as storm damage. In general, forest cover losses due to 
fire appear greater in the 2000–2005 interval than in the 2005–2010 interval 
(see Alaska, Siberia, and Australia). Areas of active forestry practices feature 
prominently in both epochs. 

Figures 6.7 through 6.9 show the change in MODIS-indicated forest cover 
loss over the study period. At the biome scale, significant reductions in 
forest cover loss within the humid tropical and boreal biomes are found. 
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Brazil’s reduced clearing drives the humid tropical change, while less forest 
cover loss due to fire drives the boreal forest change. At the continental scale, 
the same dynamics are evident, with Europe and Africa exhibiting little or no 
change in forest cover loss. For countries with greater than 1 Mha of year 2000 
forest cover, only Indonesia exhibits a clear increase in forest cover loss. 
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FIGURE 6.7 
MODIS-indicated forest cover loss totals per forested biome for the 2000–2005 and 2005–2010 
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FIGURE 6.9 
MODIS-indicated forest cover loss totals per country for the 2000–2005 and 2005–2010 epochs 

(only countries with greater than 1,000,000 km2 of forest cover in 2000). 

The results, as shown in Figure 6.4, have significant errors of omission, 
mainly related to the coarse scale of observation, as stated previously. 
Obvious commission errors are associated largely with two environmen­
tal dynamics. First, residual haze and cloud cover impact the metric space 
and lead to noise-related commission errors in a few humid tropical regions 
referred to earlier. Second, wetlands are very dynamic in their patterns of 
spectral change as floods arrive and recede along with attendant vegetation 
responses. Wetland formations are another source of forest change com­
mission error. Finally, the uncertainty regarding the radiometric stability of 
the Terra instrument could significantly impact the repeated use of a single 
model over the two 5-year intervals. Further study is required to resolve 
the impact of Terra’s radiometric degradation on the observed forest extent 
changes of this study, particularly between the two 5-year epochs. 

6.5 Conclusion 

The combined high-temporal observation frequency and moderate spatial reso­
lution of MODIS data enable global forest change indicator mapping. The abil­
ity to synoptically characterize forest disturbance at the global scale allows for 
direct comparison of change rates through time and across space. The continu­
ous acquisition of multispectral observations at the global scale for 10+ years 
illustrates the value of operational systems in quantifying environmental 
dynamics. As noted, such analyses are dependent on a stable radiometric data 
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source. While MODIS is not an operational system, it enables the develop­
ment of methods that can be implemented with operational systems such as 
the recently launched VIIRS (Visible Infrared Imager Radiometer Suite) instru­
ment (Justice et al. 2010). This is a critical monitoring tool of indicators of global 
change, such as forest dynamics, and its value will only increase with the length 
of the high-temporal, moderate spatial resolution data record. 

Our results document a pervasive and changing global forest disturbance 
dynamic. Overall, a reduction in stand-replacement forest disturbance from 
2000 to 2005 and 2005 to 2010 was found. However, the data represent only 
indications of forest cover loss, not an estimation of total area, and may 
also be affected by degradation of the Terra sensor. Differences in epochal 
change illustrated here are a function of the scale of MODIS observations. 
Definitive quantification of aerial change over time could be different than 
that observed with MODIS and would require finer scale time-series imag­
ery for either direct forest area loss estimation or calibration of the MODIS 
indicator product. The clearest reduction in forest cover loss occurred in 
Brazil and is related to policy and enforcement efforts to improve regulation 
of forest clearing in the Brazilian Amazon. Forest cover loss related to fire 
appeared to decline over the two epochs as well. The drivers of global forest 
change are many, and the spatial patterns seen in the MODIS change prod­
ucts capture four principle drivers: (1) agroindustrial scale clearing related to 
land use conversions and forestry practices, (2) fire, (3) disease, and (4) storm 
damage. Attributing each identified change pixel to a specific driver would 
greatly enhance the utility of the data for a host of land use and biogeochemi­
cal cycle modeling applications. 

The ability to quantify both forest cover extent and change independent 
of land use designations is important in generating a consistent narrative of 
global forest change. Global observing systems such as MODIS enable such 
quantifications, but are limited in area estimation. As the discipline moves 
forward, high-temporal observations will be needed at finer resolutions in 
order to generate global forest cover extent and change maps that can be 
used directly in estimating area change. Landsat data, which have included 
a global acquisition strategy (Arvidson et al. 2001) and are now freely avail­
able (Woodcock et al. 2008), will be the data source to extend the methods 
developed using MODIS to finer spatial scales. 
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7.1 Introduction 

This chapter presents an operational remote sensing approach for monitoring 
forest cover at continental and global levels, based on a statistical sampling 
design and on satellite imagery from optical sensors of moderate spatial 
resolution (30 m × 30 m resolution). 

There are two main approaches to forest characterization and monitor­
ing with remotely sensed data (Achard et al. 2010): analyses that cover the 
full spatial extent of the forested areas, termed “wall-to-wall” coverage, or 
those that select a  statistical sample of forested areas for careful  analysis and 
extrapolate the findings to the entire area of interest. Wall-to-wall mapping 
has long been done with relatively coarse spatial  resolution  satellite data and, 
currently, moderate spatial  resolution  wall-to-wall  analyses are  possible 
(see following Chapters 9 to 13 for examples of wall-to-wall analyses). 
However, spatially exhaustive analyses are challenging to operationalize 
on frequent time intervals and over very large, heterogeneous areas. 
Statistical sampling approaches, therefore, serve an important role in 
providing cost-effective, timely, repeatable estimates of forest character­
istics over large areas and at frequent time intervals (e.g., Brink and Eva 
2009; Broich et al. 2009; Duveiller et al. 2008; Eva et al. 2010). A sampling 
procedure that adequately represents deforestation events (e.g., through a 
sufficiently dense systematic or stratified sample in space and time) can 
capture deforestation trends. 

Whichever overall approach is chosen, sampling or wall-to-wall, the spa­
tial unit of analyses or minimum mapping unit (MMU) must also be decided 
upon. There are two main choices for this. In pixel-based approaches, 
the smallest unit of analysis is the individual image pixel. Object-based  
approaches use pixel clustering algorithms to create spectrally homoge­
nous pixel groupings, which are thereafter treated as individual units for 
analysis. 

For the Global Forest Resources Assessment 2010 (FRA 2010), the FAO 
(Food and Agriculture Organization of the UN) has extended its global 
and continental monitoring of forest cover changes to include analysis 
of remotely sensed land cover and land use as a complement to standard 
national reporting. The survey applies object-based image analysis methods 
to a globally distributed, systematic sample of moderate-resolution satellite 
imagery to estimate forest land cover and land use change for the periods 
1990–2000 and 2000–2005. The FAO has produced estimates of tropical 
forest cover changes as part of past assessments (FRA 1990, 2000), but 
the remote sensing survey (RSS) of FRA 2010 has been extended to all 
lands (FAO et al. 2009). This survey has been conducted by a partnership 
between FAO and its member countries, the European Commission Joint 
Research Centre (JRC) as the main scientific partner, South Dakota State 
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University,  the  United States Geological Survey (USGS), and the U.S. 
National Aeronautics and Space Administration (NASA). Over 200 national 
experts from 106 countries have participated in the survey. 

This chapter presents the scientific and technical methods that have been 
developed for monitoring forest cover changes in the framework of this 
global survey. 

7.2 Sampling Strategy 

The grid system selected for the global systematic sample is a rectilinear 
grid, based on degrees of geographical latitude and longitude (Figure 7.1), 
that enables a straightforward implementation, and easy location and 
understanding (Mayaux et al. 2005). Although stratified sampling is 
generally preferable for improving the efficiency of land cover change 

FIGURE 7.1 
(See color insert.) Example of time series (for years 1990, 2000, and 2005) of Landsat satellite 

imagery over one sample site in the Amazon Basin (20 km × 20 km size). Forests appear in dark 

green, deforested areas (agriculture and pastures) appear in light green or pink. 
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estimation (Stehman et al. 2011), a systematic, nonstratified sampling has 
been implemented because: 

 1.   This sampling scheme is intended to be also used for future time  
periods (for year 2010 and later), and it is impossible to reliably pre­
dict where deforestation “hot spots” will be located in future years. 

 2. The systematic sample scheme can be easily intensified for specific 
purposes, in particular for assessment at a national level or for a  
particular ecosystem. Indeed, a number of countries supported by  
FAO are already carrying out national forest assessments based on 
an intensification of the global sampling scheme (http://www.fao. 
org/forestry/nfma).  

The global systematic sampling approach has already been tested against 
wall-to-wall reference data over the Brazilian Amazonia basin (Eva et al. 
2010). It has also been intensified and tested for the Congo River basin region 
for the 1990–2000 period (Duveiller et al. 2008) and for the French Guiana 
territory (Eva et al. 2010), demonstrating its potential to estimate forest cover 
changes from continental to regional levels (Broich et al. 2009). 

Globally, the survey involved 13,690 sample sites. Sampling has not been  
performed for latitudes higher than 75° north or south. At most sites, the 
area surveyed was 10 km  × 10 km, which represents approximately 1% of  
the world’s land surface. In the tropics, the area surveyed for each site was 
20  km  × 20 km for the period 1990–2000, which represents approximately 
3.6% of the tropics. 

7.3 Acquisition of Satellite Imagery 

Nearly complete global coverage from the Landsat satellites is now available 
at no cost from the Earth Resources Observation Systems (EROS) Data Center 
(EDC) of the USGS (http://eros.usgs.gov/). A recent product, called the Global 
Land Survey (GLS), represents a global archive of good quality, orthorectified 
and geodetically accurate image acquisitions from Landsat Multispectral 
Scanner (MSS), Landsat Thematic Mapper (TM), and Landsat Enhanced 
Thematic Mapper (ETM+) sensors focused on the epochs ca. 1975, ca. 1990, 
ca. 2000, mid-2000s, and ca. 2010 (Gutman et al. 2008). These GLS data sets 
play a key role in establishing historical deforestation rates (Masek et al. 2008), 
although in some parts of the tropics (e.g., Western Colombia, Central Africa, 
and Borneo) persistent cloud cover is a major challenge for using these data 
(Ju et al. 2009; Linquist et al. 2008). For these regions, the GLS data sets can be 
complemented by remote sensing data from other satellite sensors with similar 
characteristics, in particular, optical sensors of moderate spatial resolution. 
The GLS data sets are described with full details in Chapter 4. 

http://www.fao.org
http://www.fao.org
http://www.eros.usgs.gov


 

 

  
 

 

Use of a Systematic Statistical Sample with Moderate-Resolution Imagery 115
 

For each sample location of the systematic grid, the available Landsat data 
(from TM or ETM sensors) were sought from the GLS database (primary 
data source). These data were downloaded at full resolution (30 m × 30 m). 
Image subsets of 20 km × 20 km covering the sample sites were extracted in 
UTM projection (Potapov et al. 2011). The sample site target size is 10 km × 
10 km, but a 5 km buffer has been used for data extraction and processing 
in order to keep contextual information. In the event of the data being unac­
ceptable (due to cloud cover or artifacts from visual screening assessment), 
replacement data were sought from different sources with the help of the 
GEOSS (Global Earth Observing System of Systems) Land Surface Imaging 
Constellation. In particular, for the 4,016 sample sites covering the tropics, 
2,868 suitable image pairs were found for the period 1990–2000 from the 
GLS data sets, representing 71.6% of the tropical sample (Beuchle et al. 2011). 
Better alternatives could be found for 26.6% of these 4,016 sites, substituting 
cloudy or missing GLS data sets at one or the other epoch or both (GLS­
1990 or GLS-2000). Gaps were filled from the USGS Landsat archives (1,070 
samples), data from other Landsat archives (e.g., GISTDA, ACRES, INPE; 
53 samples), or with alternatives to Landsat, i.e., 15 samples from SPOT 
(Satellite Pour l’Observation de la Terre). This increased the effective number 
of sample pairs to 3,945, representing 98% of all target samples. No suitable 
image pairs were found for 71 confluence points, which were not randomly 
distributed, but mostly concentrated in the Congo basin, where around 15% 
of the region remains unsampled. There is a higher number of missing sites 
in the second period assessed (2000–2005) in particular for tropical regions, 
due to the malfunctioning of the line scanner on the Landsat 7 ETM sensor 
after June 1, 2003, which corrupts around 25% of each image acquisition 
(Maxwell 2004). The missing sites in the tropics for the 2000–2005 period 
are mainly located in Central America, Ecuador, the Colombian Choco, 
the Guianas, the southern ridge of West Africa, the western part of Congo 
basin (South Cameroon, Equatorial Guinea, Gabon, and Western Congo), 
Central Democratic Republic of Congo, Eastern Tanzania, and Indonesia 
(Kalimantan, Sulawesi, and Irian Jaya). 

7.4 Preprocessing of Satellite Imagery 

For each sample site, satellite image subsets (from 1990, 2000, and 2005) were 
preprocessed for geometric control, radiometric calibration and normaliza­
tion, segmentation, and classification. Prior to the object segmentation and 
classification steps, radiometric correction to a common radiometric scale is 
required in order to apply standard supervised classification algorithms to 
the full imagery data set, making use of spectral training data of representa­
tive vegetation types. Acquisition errors and irrelevant data (e.g., clouds and 
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cloud shadows) must also be removed in the preprocessing phase. A robust 
approach applicable to a large amount of multidate and multiscene Landsat 
imagery has been developed to convert all images into normalized radio­
metric values (Bodart et al. 2011). The different preprocessing steps were 
(1) conversion to top-of-atmosphere (ToA) reflectance, (2) cloud and cloud 
shadow removals, (3) haze correction, and (4) image radiometric normaliza­
tion. The conversion to ToA reflectance was achieved by first converting 
raw digital numbers (DN) into at-sensor spectral radiance for each band 
and subsequently the at-sensor radiance was converted into ToA reflec­
tance. The remaining clouds and cloud shadows in the selected images 
were masked in two steps. The first step was to detect all potential cloud 
and cloud shadow pixels using an automatic spectral rule-based mapping 
approach followed by a second step that consisted of a sequential applica­
tion of a postprocessing algorithm based on morphological and topological 
methods designed to create a refined mask for images where clouds were 
visually identified. Image contamination by haze is relatively frequent in 
tropical regions (semitransparent clouds and aerosol layers that alter the 
spectral signatures of objects, especially in the visible bands). Partially 
contaminated images were corrected on the basis of the method using the 
fourth component of the tasseled cap transformation (TC4) computed from 
the six reflective bands of Landsat imagery. The applied image radiometric 
normalization is a relative normalization of multitemporal imagery cover­
ing different areas. Relative normalization adjusts the spectral values of all 
images to the values of one reference image. Dense evergreen forest pixels 
have been considered as pseudo-invariant features (PIF), i.e., stable targets  
between dates, assuming that reflectance differences in these stable targets 
are due to atmospheric perturbations. This normalization algorithm, referred 
to as “forest normalization,” has been applied to each sample image with sig­
nificant presence of dense evergreen forests (i.e., more than 2,000 pixels in the 
image). The median forest value parameter was extracted from a forest mask 
based on empirically determined thresholds of NDVI and bands 4 and 5 from 
Landsat imagery from years 1990 and 2000 and intersected with a 250 m for­
est map derived from the vegetation continuous field (VCF) product (Hansen 
et al. 2003). For those sites with a lower proportion of dense evergreen forests 
(i.e., less than 2,000 pixels in the image), a relative normalization has been per­
formed whenever possible by visually selecting an area that did not change 
between the two dates, using the image of year 2000 as the reference image. 

The haze correction algorithm improved the visual appearance of the image 
and significantly corrected the digital numbers for Landsat  visible  bands. 
The normalization procedures (forest normalization and relative normaliza­
tion) improved the correlation between the spectral values of the same land 
cover in multidate images. The image subsets from the year 2000 were taken 
as the reference for geometric and radiometric controls. The preprocessed 
multitemporal data set constituted the basis for an automatic object-based 
supervised classification. 
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7.5 Segmentation of Satellite Imagery 

After preprocessing, the image subsets were segmented so as to iden­
tify homogenous land units that can then be classified for each date (Raši 
et al. 2011). This approach comprises two automated steps of multidate 
image segmentation and object-based land cover classification (based 
on a supervised spectral library), followed by an intense phase of visual 
control and expert refinement. Image segmentation is done at two spatial 
scales, introducing the concept of an MMU via the automated selection of 
a site-specific scale parameter. The automated segmentation of land cover 
polygons and the pre-classification of land cover types mainly aim at avoid­
ing manual delineation and at reducing the efforts of visual interpretation of 
land cover to a reasonable level, making the analysis of 13,000 sample sites 
feasible. 

Several segmentation algorithms were tested. Based on technical 
performance and visual assessment of the object delineation, the eCognition 
software (Trimble) was chosen as most suited for our specific purpose. In 
particular, this software can process large amounts of data and classify 
objects in one common processing chain. For the purpose of forest cover 
monitoring, a multidate segmentation approach has been preferred to 
two separate, single-date image segmentations. Multidate segmentation 
integrates from the very beginning of the temporal aspect into the generation 
of spatially and spectrally consistent mapping units. For the tropical 4,000 
sites, the segmentation process was initially implemented on two-date 
imagery (1990 and 2000) in a single operation. The Landsat TM or ETM+ 
spectral bands 3, 4, and 5 (ToA reflectance values) of both reference years 
(1990 and 2000) were therefore used as a common input to the segmentation 
procedure, assigning equal weights for all six bands. The weights of two 
other parameters in the eCognition software—referred to as “spectral” and 
“shape”—had to be determined for segmentation. Based on a series of tests 
with varying settings, the main weight of 0.9 has been empirically assigned 
to the “spectral” parameter, i.e., the spectral homogeneity accounts for 
90% of the merging decision rules. The resulting weight for the “shape” 
parameter of 0.1 (as sum of the two weights = 1) proved to be sufficient for 
avoiding very irregular and fringed objects. 

The main parameter controlling the size of objects is referred to as the 
scale parameter. The higher the scale parameter, the larger the average size 
of image objects, and in particular the maximum object size. We developed 
a process that automatically determines a specific scale parameter for each 
sample site in order to reach the desired MMU. This is achieved by increas­
ing the scale parameter through iterative segmentations, until a size thresh­
old for the smallest polygons is reached: the iterative process is stopped 
when the largest object among the 5% smallest objects reaches the desired 
MMU, i.e., when at least 95% of the remaining objects in the sample site are 
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larger than the MMU. An initial MMU of 1 ha was set for the segments. This 
is a compromise between not having segments that are too small, and avoid­
ing segments with mixed land covers. The segments of the individual image 
subsets are then classified using an automated supervised classification. In 
a second phase, these classified segments are aggregated into segments of 5 
ha by increasing the scale parameter through iterative segmentations. In a 
final step, the number of the remaining small polygons below 5 ha size was 
reduced by merging each object smaller than 3 ha (corresponding to ca. 33 
Landsat TM pixels) with the object it shared the longest common borderline 
with. The image objects resulting from the multidate segmentation conform 
to a standard MMU and exhibit similar spectral characteristics in time and 
in space. This 3 ha MMU size enables a feasible visual assessment of the clas­
sification by local experts. 

7.6 Definition of Land Cover and Land Use Classes 

Four main land cover categories were defined for labeling the 1 ha MMU 
segments: “tree cover” (TC), “other wooded land” (OWL), “other land” (OL), 
and “water” (WA). TC comprises all tree cover where canopy density can be 
expected to be ≥10% and tree heights to be ≥5 m. Included are natural forests 
and forest plantations, but also tree cover outside  forests, such as in parks or 
on agricultural lands. OWL comprises all woody  vegetation of lower height 
(<5 m), mainly shrub land, but also shrub-like agricultural crops, vegeta­
tion regrowth, or plantations with small trees. OL includes all nonwoody 
land cover (e.g., herbaceous cover, pastures, nonwoody crops, burnt areas, 
bare soils, settlements), except for water. The water class consists of rivers 
and in-land water bodies. The definition for tree cover has been chosen to be 
compatible with the FAO  “forest” definition (FAO 2010). From the spectral 
and textural information of the moderate-resolution satellite imagery used 
in this study, one can only infer approximate tree density and broad height 
categories. The class thresholds served therefore rather as guidance for inter­
pretation and for selection of training areas. 

Land cover is the observed biophysical properties of the land surface, 
whereas land use is defined by the human activities and inputs on a given 
land area. Four main land use categories have been defined:  “forest,” “other 
wooded land,” “other land use,” and “water.” Treating forest as a land use 
is consistent with the forest definition used in FAO’s Global FRA country 
reports and national reports to the United Nations Framework Convention 
on Climate Change (UNFCCC). Forest land use may include periods during 
which the land is devoid of tree cover, for example, during cycles of forest 
harvesting and regeneration. In  such  cases, a land use is considered to 
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be forest land use when management or natural processes will, within a 
reasonable time, restore tree cover to the point where it  constitutes a forest. 

7.7 	  Supervised Classification of Segmented Satellite  

Imagery for the Tropical Sample Sites 

Spectral signatures were collected from the preprocessed Landsat ETM+ 
data of the year 2000 from one common set of training areas representing the 
main land cover classes within a region (Raši et al. 2011). For the first level 
classification at 1 ha, a large number of spectral classes were required to cover 
the variability of spectral reflectance within any particular land cover class, 
e.g., the TC class consists of 15 spectral classes including dense evergreen 
forests, degraded evergreen forests, dry deciduous forests in  different 
phenological phases, mangrove, and swamp forest. Only homogeneous 
land cover units were selected as training areas, using additional references 
like fine- resolution satellite data (e.g., Google Earth). The number of  pixels 
ultimately used for establishing the spectral signature of a subclass was 
generally higher than 1,000. Spectral signature statistics (means and  standard 
deviations) were calculated at the level of subclasses. 

A generic supervised classification of the 1 ha level segmentation objects 
was performed uniformly for all sample sites. The classification was 
based on membership functions established from the spectral signature 
of each subclass for the Landsat TM/ETM+ spectral bands 3, 4, and 5. The 
membership  functions of each subclass were defined as an approximation  
of the class probability distribution, represented by isosceles triangles in the 
feature space of each spectral band. The top of the triangle corresponds to 
the class mean (m) and represents the spectral value of highest probability 
for class assignment. The two triangle legs descend from that position up to 
a spectral distance of m ± 3 sd (sd = standard deviation), linearly decreasing 
the probability of class assignment to a value of “0” at the positions m ± 3 sd. 

The classification process compares the object spectral mean values to the 
membership functions defined for all subclasses. An object was assigned to 
the class displaying the highest membership probability for the object spec­
tral mean values. We applied these membership functions to the imagery of 
all reference years, having performed previous spectral calibration to ToA 
reflectance values, haze correction, as well as normalization of the satellite 
imagery. The subclasses resulting from supervised classification served only 
for the mapping of the four main land cover classes. 

The 1 ha level classified segments were automatically aggregated to 5 ha 
level into the five broad land cover classes based on the proportion of tree 
cover. The supervised classification result obtained for the 1 ha objects served 
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as direct input to the thematic aggregation done at the second-level segmen­
tation (5 ha MMU). The labeling of the second-level objects was performed 
by passing through a sequential list of classification criteria, with a main 
emphasis on tree cover proportions within second-level objects, e.g., TC class 
is defined as containing more that 70% tree cover within the 5 ha segment. As 
a consequence of merging objects from a finer scale (1 ha MMU), a “tree cover 
mosaic” class has been introduced for objects containing partial tree cover at 
the second level (objects containing an area portion of 40%–70% tree cover). 

7.8	   Visual Verification and Refinement  

of the Land Cover Classifications 

The resulting land cover multitemporal classifications are then interde­
pendently visually controlled by national experts. A dedicated graphical 
user interface has been developed for the visual verification and poten­
tial reassignment of land cover labels (Simonetti et al. 2011). For a selected 
sample site, the tool displays simultaneously the pair of image subsets (e.g., 
of 1990 and 2000) and the corresponding digitally classified land cover maps. 
The tool offers an optimized set of commands including image enhance­
ment, simultaneous zoom of displayed data, single or multiobject selection 
and relabeling, specific class selection, and highlighting. The graphical user 
interface is available in English, Spanish, French, and Russian. 

Visual control and refinement of the digital classification results at the 
5 ha MMU level were implemented using, whenever available, very high-
resolution satellite imagery (e.g., through Google Earth), but also existing 
vegetation maps and field knowledge as supplementary references: a 
revision of the mapping results was then carried out by forestry experts 
from the tropical countries who contributed local forest knowledge to 
improve the interpretation. During a final phase of regional harmonization, 
an experienced image interpreter performed a control of the interpretation 
consistency across the region, applying final corrections where necessary. 
Figure  7.2 shows a simplified example of the main steps used in visual 
verification and refinement of the land cover and land cover changes 
between 1990 and 2000. 

The phase of visual control and refinement has been designed as a cru­
cial component for correcting classification errors and for implementing the 
change assessment. The importance of visual control and correction can be 
perceived when comparing to the initial automatic classification result: e.g., 
in South East Asia about 20% of the polygon labels were changed through 
expert knowledge by visual interpretation (Raši et al. 2011). More than 
120 experts from tropical countries have been involved in this verification 
and refinement phase of the survey. 
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FIGURE 7.2 
(See color insert.) Visualization tool used for the process of verification and correction of 

 multitemporal classifications. Left column: Segmented Landsat imagery displayed (top: year 

1990, bottom: year 2000). Right column: Land cover maps produced from satellite imagery. 

7.9 Conversion of the Land Cover Maps into Land Use Maps 

Land cover maps were first converted automatically into land use maps, 
and then the conversion results were reviewed through visual control by 
national experts. The automatic conversion of land cover maps into land use 
maps uses the following systematic rules: 

r� Classes TC and tree cover mosaic are converted to forest 

r� Class OWL remains as OWL 

r� Class OL is renamed other land use 

r� Class WA remains as WA 

Because a direct translation possible from land cover to land use is not always 
possible, a visual interpretation and refinement of the land use classifications 
must be carried out by national experts. For example, when a forest has been 
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FIGURE 7.3 
(See color insert.) The 20 km × 20 km multi-spectral Landsat image (left) for a sample site in 

the boreal forest showing, for the central 10 km × 10 km portion (red box), the classification of 

land cover (center) and land use (right). Land cover is classified as TC (green), tree cover mosaic 

(light green), OWL (orange), and other land cover (yellow). Land use is classified as forest 

(green), OWL (orange), and other land use (yellow). 

clear-cut and is temporally unstocked, the land cover derived from any kind 
of automatic classification or visual interpretation will indicate something 
other than tree cover. However, the land use will remain as forest for a tem­
porary clearing caused by timber harvest or fire, and this information can 
only be inferred by local knowledge of the land use context (Figure 7.3). 

7.10	  Pr oduction of Transition Matrices and Correction  

to Reference Dates and for Missing Data 

For each sample site, land area transition matrices are produced for each 
period (1990–2000 and 2000–2005) and for both land cover and land use 
transitions (Table 7.1). 

It was not possible to acquire all images at the exact reference date, with 
acquisitions ranging from 1984 to 1992 for the first reference year (1990), 1997 
to 2003 for the second reference year (2000), and 2004 to 2009 for the third 
reference year (2005) (Beuchle et al. 2011). Each sample site’s transition matrix 
was then adjusted to the baseline dates of June 30, 1990, 2000, and 2005; this 
was done by assuming that the land cover change rates are constant dur­
ing the given period. We, therefore, linearly adjusted the land cover change 
matrices to the three reference dates. 

Cloudy areas were considered as an unbiased loss of data and assumed 
to have the same proportions of land cover as noncloudy areas within the 
same site. This is achieved by converting the transition matrices 1990–2000 
and 2000–2005 to area proportions relative to the total cloud-free land area 
of the sample site. For the missing sample sites in tropical regions, we 
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TABLE 7.1 

Example of Land Cover Transition Matrix for Site [North 2°; West 074°] 
(areas in km2) 

Tree Tree Cover Other Other Land 

Cover Mosaic Wooded Cover Total Year 

Year 2000/Year 1990 (TC) (TCM) Land (OWL) (OLC) WA 1990 

TC 44.9 4.4 2.8 9.8 0 61.9 

TCM 0 3.4 1.7 5.4 0 10.5 

OWL 0 0.6 4.1 3.4 0 8.1 

OLC 0 0.3 1.6 17.9 0 19.8 

WA 0 0 0 0 0 0 

Total year 2000 44.9 8.7 10.2 26.5 0 100.2 

used a local average from surrounding sample sites as  surrogate results. 
The following weights (δjj′) were applied for the local average of missing 
sites: 

where the differences in latitude and longitude between two sample sites 
(j and j′) is used with a power of 4. 

Small differences may appear between land cover proportions of year 2000 
obtained from the successive transition matrices [1900–2000] and [2000–2005] 
due to the linear temporal extrapolation to the reference dates. To correct 
for potential inconsistencies for the common year 2000, the land cover pro­
portions of year 2000 from the change matrices for period 2000–2005 are 
“calibrated” to the land cover proportions of year 2000 from the [1990–2000] 
transition matrix through a linear adjustment for each sample site. 

7.11  Production of Statistical Estimates 

For the statistical estimation phase, the sample sites are weighted in relation 
to their probability of selection (Eva et al. 2012). Indeed the sampling frame, 
although systematic, does not give equal probability because the distance 
between sites along a parallel is not the same as the distance along a meridian. 
All sample units were given a weight, equal to the cosine of the latitude, to 
account for this unequal probability. The impact of these weights is moderate 
in tropical areas. The sample sites that contain a proportion of sea compensate 
for unselected sample sites that contain a proportion of land (when the center 
of the site is located in the sea) because they were considered as full sites. 
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The area change proportions of all sample sites are then extrapolated to 
the study area using the Horvitz–Thompson direct expansion estimator. The 
estimator for each area class transition is the mean proportion of that change 
per sample site, given by Equation 7.2: 

where yic is the proportion of area change for a particular class transition in the 
ith sample site. The weight of the sample unit is wi and m is the sum of the sam­
ple weights. The total area of change for this class transition Zc is obtained from: 

Zc =D ⋅ yc  (7.3) 

where D is the total area of the study region. 
The usual variance estimation of the mean is known to have a positive 

bias. Alternative estimators based on a local estimation of the variance have 
been shown to reduce the bias. We use an estimator of the standard error 
based on local variance estimation: 

where 
f is the sampling rate 
weight wjj′ is an average of the weights wj and wj′ 
δjj′ is a decreasing function (7.1) of the distance between j and j′. 

The standard error is then calculated from this local variance using the total 
number of available sample sites, i.e., not accounting for the missing sites 
even if they are replaced by a local average. 

The observations (source data sets) that are used to produce these results 
are derived from satellite interpretations. These surrogates to ground obser­
vations may be subject to uncertainty (bias). The use of such surrogate data 
for assessing area change is inevitable in many areas of the tropics where no 
ground observations exist and where large areas of inaccessible forests can 
only be monitored at affordable costs by using satellite data. 

7.12 Perspectives 

An operational system for processing and analysis of a global sample of 
moderate-resolution satellite imagery has been developed to produce maps 
and estimates of forest area changes in the periods 1990–2000 and 2000–2005 
at tropical to global scale (Figure 7.4). 
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The preliminary findings of an in-depth analysis of forest land-use change 
globally (FAO and JRC 2011) can be summarized as follows: 

r� The area in forest land use declined between 1990 and 2005, with 
global mean rates of loss between 1990 and 2000 of 2.7 (±0.9) million 
ha/year, rising to a mean annual loss of 6.3 (±1.4) million ha/year 
between 2000 and 2005. 

r� Just over half the world’s forests are in tropical or subtropical  climatic 
domains. 

r� There were important regional differences in forest loss and gain. 
In particular, forest loss was highest in the tropics going from 
–5.7 (±0.8) million ha/year in the 1990s to –9.1 (±1.2) million ha/year 
between 2000 and 2005. 

The methods developed through the survey will be used to improve the 
measurement and reporting of forest area and change in forest area over 
time as part of the continual improvement of the FAO FRA process. 

These results can be an important input to national and international 
reporting processes where forest area and change statistics are needed, 
such as the Convention for Biological Diversity and the emerging initia­
tive for Reducing Emissions from Deforestation and Forest Degradation in 
Developing countries (REDD+) under the UNFCCC. 
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8.1 Introduction 

Information on the extent and change of forest cover at the national to global  
scale is important for many reasons. At the national level, it provides a basis 
for terrestrial carbon accounting, land use management, monitoring of forest  
resources, and conservation planning. Many international processes use it  
too. It helps improve the forest cover change reporting of the United Nations 
Food and Agriculture Organization (FAO), which serves as the baseline 
reference for global-scale environmental accounting and modeling. It pro­
vides keystone variables for international initiatives to reduce deforestation,  
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such as the process of reducing emissions from deforestation and degrada­
tion in developing countries (REDD+) of the United Nations Framework 
Convention on Climate Change (UNFCCC), which requires developing 
countries to have robust and transparent national forest monitoring systems. 
It is important to assess the status and threats for biological diversity as 
required by the Programme of Work on Forest Biological Diversity within 
the United Nations Convention on Biological Diversity. Environmental 
nongovernmental organizations such as World Wide Fund, Conservation 
International, and Greenpeace depend on forest degradation data to design 
forest conservation campaigns and combat illegal logging. 

Ideally, such information should be comprehensive and consistent across 
the relevant space and time. Currently, the primary source of global forest 
cover extent and change is data from national forest inventories (NFIs), 
which are aggregated by FAO to form a series of Global Forest Resources 
Assessments (FRA). The usefulness of these assessments is reduced, however, 
by a number of factors that are inherent in the aggregation approach: (1) NFI 
data from different countries differ in terms of quality and age (update rates), 
and data from developing countries are often incomplete and inconsistent; 
(2) despite the efforts of FAO, countries de facto apply different definitions of 
forest cover and use, different forest accounting and change detection meth­
ods, thus making it difficult to synthesize results; (3) forest cover and change 
information are only provided in a tabular numerical format without any 
spatial disaggregation. The FRA process has started to incorporate remotely 
sensed data through the remote sensing survey, a sample-based assessment 
of global and biome-level forest extent dynamics (FAO 2009). However, for 
many applications, a spatially exhaustive map product is required. 

Satellite remote sensing provides a viable data source to supplement NFIs 
and global forest monitoring initiatives. Forest cover extent and timely 
change estimates can be successfully retrieved from medium spatial resolu­
tion optical satellite data (Williams et al. 2006). These data are invaluable 
for the quantification of forest cover within the vast extent of remote and 
inaccessible forest landscapes, as well as for developing countries where lack 
of transportation infrastructure coupled with political instability often limit 
data collection and forest mapping on the ground. 

During the last decade, a number of forest monitoring projects have been 
developed and implemented at the national level using satellite data. Major 
timber-producing countries, such as Finland (Tomppo 1993), Sweden (Willén 
et al. 2005), and Canada (Wulder et al. 2008), use optical satellite imagery as a 
standard source of information to supplement and extrapolate field plot mea­
surements and to monitor forest management. Among developing countries, 
the Brazilian system on mapping annual deforestation (PRODES) is the largest 
and most robust operating forest monitoring system (INPE 2002). However, to 
expand these efforts to the biome and global scales, three major problems need 
to be solved: (1) methodological consistency must be improved (so that the 
results obtained at the national scale are directly comparable); (2) cost-effective 
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monitoring methods must be developed (so that the cost of source data and 
data analysis will be low enough to allow national- to global-scale implemen­
tation); and (3) open data access must be ensured (so that various international 
and nongovernmental organizations and experts are able to analyze, review, 
and validate the monitoring results). 

There are two main strategies for satellite-based forest monitoring at 
a large scale: sampling and wall-to-wall mapping. Several sample-based 
approaches have been successfully implemented during the last decade at 
biome (Achard et al. 2002) and global levels (FAO 2009; Hansen et al. 2010). 
Different sampling designs were used to select classified imagery subsets, 
including regular sampling (FAO 2009) and stratified sampling (Achard et al. 
2002; Hansen et al. 2010). Both approaches, however, are challenged by low 
estimate precision due to the uneven distribution of change within forest 
landscapes (Tucker and Townshend 2000), and neither produces a spatially 
explicit result. This limits their usefulness for many applications. 

Wall-to-wall coverage of satellite data with sufficient spatial resolution 
differs from sample-based approaches in that it allows for direct mapping 
of forest cover and change and for a spatially complete quantification of 
forest dynamics at the national scale. Low spatial resolution data of the 
kind  produced by the MODIS or MERIS sensors are inadequate for direct 
estimation of forest change, as much of it occurs at subpixel scales (Jin and 
Sader 2005). Medium spatial resolution data, such as that produced by the 
Landsat sensor, do allow for accurate forest cover and change area measure­
ment (Williams et al. 2006). The use of medium spatial resolution data for 
national-scale forest monitoring has been limited until recently by the high 
data costs, the difficulty of handling large data volumes, and data analy­
sis problems in regions with persistent clouds, such as the humid tropics. 
Recently, however, changes in data distribution policies and data-processing 
algorithms have enabled fast and cost-effective national-scale forest cover 
and change assessment. 

Undoubtedly, the most important enabling factor for large-scale 
satellite-based forest monitoring is free-of-charge data availability. While 
low  spatial resolution data (AVHRR, MODIS) were freely available for 
decades, medium-resolution data have been costly until recently. In January 
2008, the U.S. Geological Survey (USGS) implemented a new Landsat data 
distribution policy that provides Landsat data free of charge. The free-of­
charge data allows financially constrained developing countries to use it 
for wall-to-wall forest mapping. For example, purchasing the 2000–2010 
Landsat data for a country like the Democratic Republic of the Congo (DRC) 
would have cost more than 6 million U.S. dollars at the pre-2008 price. These 
resources can now be spent on data processing, analysis, and validation 
of results. Medium-resolution Landsat imagery provides the best balance 
between acquisition cost and spatial resolution, despite the fact that it is 
inadequate for the detection of small-scale forest change (e.g., low-intensity 
selective  logging). Even when a complete national coverage of higher spatial 
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resolution imagery is available, the high data cost will restrict its use by 
developing countries for national monitoring purposes. 

Another important factor increasing the feasibility of using national 
wall-to-wall medium-resolution imagery for forest monitoring is the prog­
ress in computing capacity and data-processing algorithms. Modern com­
puting hardware allows for rapid processing of Landsat data at the national 
scale (from several weeks to a month). Recent progress in automated Landsat 
data processing and mosaicing has made it possible to produce cloud-free 
annual or epochal composite images for persistently cloudy areas (Hansen 
et al. 2008; Potapov et al. 2011). Nonparametric classifiers (e.g., k-nearest neigh­
bor, decision tree, support vector machines, and neural networks) allow for 
fast and precise mapping and change detection of heterogeneous land cover 
types such as forest cover (Hansen et al. 1996). 

The rapid development in the quality and access to satellite imagery has 
widened the circle of actors that can monitor forests beyond national for­
est administrations, thereby enhancing transparency. Civil society, private 
industry, and researchers can now monitor forests in support of conservation, 
business, science, and other forest resource assessment and management 
applications. NFI and monitoring data provided by national governments 
can be validated by in-country and international nongovernmental organi­
zations and expert groups, highlighting any data quality issues. This creates 
a competitive environment that stimulates the improvement of governmen­
tal policies and NFI methods. Forest monitoring transparency, however, 
requires that the source satellite data remain in the public domain and can 
be freely redistributed. Currently, only a few image data providers, including 
USGS and INPE, deliver satellite imagery under liberal licensing conditions 
that allow for sharing and redistribution of the data and derived monitoring 
products. 

Our approach to national-scale forest cover loss monitoring is an evo­
lution of an algorithm developed by Hansen et al. (2008). Data from the 
MODIS sensor were used to preprocess Landsat time-series images that in 
turn were used to characterize forest cover extent and loss. Our approach 
is based on a fully automated Landsat data processing, including scene 
selection, per-pixel quality assessment (QA), and normalization. The 
Landsat data archive was exhaustively mined, and all data that satisfied 
our  selection criteria were used for the analysis. Individual Landsat images 
were normalized using MODIS-derived surface reflectance target and used 
to derive multitemporal metrics and time-sequential composites. These 
metrics, along with the MODIS data time series, were used as independent 
variables to build supervised decision tree models for mapping forest cover 
and change. Mapping and monitoring forest degradation, which include 
assessment of low-intensity disturbance and fragmentation, required an 
alternative method based on manual interpretation of time-sequential 
Landsat image composites following an approach developed by Potapov 
et al. (2008). 
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The objective of the forest assessment and monitoring method presented 
in this chapter is to provide regular national forest cover updates at 5- and 
10-year intervals. The same algorithm can be used to produce results at finer 
temporal steps (e.g., annually), assuming that enough cloud-free observa­
tions are available; however, providing annual forest cover updates was 
beyond the objectives of this study. Further evaluation and evolution of the 
system will allow for more rapid updating of continental and global forest 
cover in the near future. 

The forest cover loss and degradation assessment algorithms have been 
applied to different forest biomes, testing and illustrating their  capability 
to be implemented at the global scale. Mapping and monitoring results 
have been published online along with Landsat image composites for use 
by national governmental and civil society organizations (European Russia 
data: http:// globalmonitoring.sdstate.edu/projects/boreal/; the DRC data: 
http://congo.iluci.org/carpemapper/; Intact Forest Landscapes data: http:// 
intacforests.org). 

8.2 Landsat Data Processing 

The Landsat remote sensing satellite program operated by the USGS pro­
vides free-of-charge data with a medium spatial resolution (30 m/pixel for 
reflective bands) suitable for the full spectra of forest monitoring studies 
from a local to the global scale (Williams et al. 2006). The Landsat program 
is unique due to its global image acquisition strategy, allowing land cover 
monitoring over the last three decades. Landsat ETM+ reflective spectral 
bands, which include visible (band 1, 450–515 nm; band 2, 525–605 nm; band 3, 
630–690 nm), near infrared (band 4, 760–900 nm), and short infrared (band 5, 
1,550–1,750 nm; band 7, 2,080–2,350 nm), provide a sufficient spectral profile for 
vegetation-type mapping and land cover change detection. The thermal infra­
red data (band 6, 10,400–12,500 nm) enable automatic cloud cover  detection. 
One of the main advantages of the Landsat spectral bands is its radiometric 
consistency and continuity between Landsat sensors (TM, ETM+, and future 
LDCM) and with the MODIS sensor, allowing intercalibration of Landsat 
and MODIS datasets. 

The complete global Landsat data archive is available through the USGS 
National Center for Earth Resources Observation and Science (EROS) from 
their Web portals: GLOVIS (http://glovis.usgs.gov) and Earth Explorer 
(http://earthexplorer.usgs.gov). The Earth Explorer data portal allows users 
to perform advanced archive inventory search as well as bulk Landsat data 
order and download. Image metadata browsing and selection is guided by 
the Worldwide Reference System-2 (WRS2) of path (ground track parallel) 
and row (latitude parallel) coordinates defining scene footprints. 

http://www.globalmonitoring.sdstate.edu
http://www.congo.iluci.org
http://www.intacforests.org
http://www.intacforests.org
http://www.glovis.usgs.gov
http://www.earthexplorer.usgs.gov
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In our study, to reduce computational time for Landsat data processing, 
only images having less than 50% cloud cover for any scene quarter, as 
estimated by the automatic cloud cover assessment (ACCA), were selected. 
However, the cloud cover threshold has been expanded to include images 
with 70%–80% cloud cover for scene footprints with low numbers of 50% 
cloud-free images. For boreal regions, only growing season images were 
selected. The annual growing season start/end dates were established for 
each Landsat WRS2 footprint using annual time series of MODIS-derived 
NDVI over a MODIS-derived forest cover mask. Image metadata analysis, 
scene selection, and bulk data ordering were performed using an automated 
metadata search tool. 

The Landsat images are normally processed as Level 1 terrain (L1T) 
corrected data by the USGS EROS. The L1T corrected data product provides 
systematic geometric accuracy by incorporating ground control points and a 
digital elevation model (DEM) for topographic accuracy. However, if insuf­
ficient ground control points or elevation data necessary for terrain correc­
tion were available, images can be delivered as Level 1 systematic correction 
(L1G). Because L1G data often feature low geometric accuracy and require 
further geocorrection, only images processed as L1T, ensuring a high geoloca­
tion precision, were used for the subsequent data processing save for the few 
coastal scene footprints where L1T corrected data were not available at all. 

Our fully automated Landsat data process included two main steps: 
(1) per-image processing including image resampling, applying at-sensor 
calibration, per-pixel observation QA, and radiometric normalization 
and (2) per-pixel observation coverage analysis, production of image 
composites, and derivation of multitemporal metrics for forest extent and 
change mapping (Figure 8.1). 

To facilitate image processing and enable per-pixel compositing, all image 
data for the nation (region) were resampled to a predefined pixel grid. The 
pixel grid was specified separately for each continent in equal-area map 
projections chosen to reduce geometric distortion. The following examples 
of national-scale forest monitoring were prototyped using pixel grids with 
60 m spatial resolution to reduce data volumes and computation time. The 
30 m spatial resolution pixel grid will be used for future continental- to 
global-scale processing. 

At-sensor calibration was applied to convert raw image digital numbers 
to top-of-atmosphere (TOA) reflectance (for reflective bands) and brightness 
temperature (for thermal infrared band) in order to minimize differences in 
sensor calibration, between sensors (TM, ETM+, and MODIS), in the sun– 
earth distance, and in the elevation of the sun. To calculate TOA reflectance 
and brightness temperature, we used the approach described in Chander 
et al. (2009), with coefficients taken from image metadata. 

The purpose of per-pixel observation QA was to select cloud-free and 
cloud shadow-free land and water observations for subsequent image 
compositing. To automatically map clouds and cloud shadows, we used a set 
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FIGURE 8.1 
Landsat data-processing workflow. 

of cloud, haze, shadow, and water detection models. The models correspond 
to a set of classification tree models (Breiman et al. 1984) derived from train­
ing data that were collected from a large sample of Landsat imagery. The 
Landsat training data and derived QA models are biome specific (separate 
models are used for tropical, temperate, and boreal forests). Training images 
were manually classified into land, water, cloud, haze, and shadow classes. 
From these images, 10% samples were randomly selected, aggregated for all 
images, and used to create generalized classification tree models. Each model 
was applied per Landsat image, yielding class probability values. Based on 
these values, a QA code was assigned to each pixel reflecting the probability 
of the pixel to be a land or water cloud-free observation, using the method 
described in Potapov et al. (2011). 

Relative radiometric normalization of Landsat imagery was used to 
reduce reflectance variations between image dates due to atmospheric 
conditions and surface anisotropy. Only reflective bands used for image 
compositing (bands 3, 4, 5, and 7) were normalized. The shortwave  visible 
bands (bands 1 and 2) were not used due to their sensitivity to atmo­
spheric haze and water vapor, precluding correct normalization. The 
thermal infrared band 6 was used for the cloud screening model but was 



 
 
 
 

 
 
 
 
 

 
 

 
 

   
 

 
 

 
 

  
 
 

 

  

  
 
 

  

136 Global Forest Monitoring from Earth Observation 

not included in the final image composite. The atmospheric correction of 
Landsat-derived TOA reflectance using time-synchronous atmospheric 
data and 6S radiative transfer code is a state-of-the art method (Masek 
et al. 2006) that should be implemented for obtaining consistent surface 
reflectance. However, simple techniques for relative image normaliza­
tion using radiometrically consistent sets of moderate spatial resolution 
data could be successfully employed to facilitate image compositing over 
large regions (Olthof et al. 2005; Hansen et al. 2008). Our approach relied 
on the correlation between Landsat TOA and MODIS atmospherically 
corrected top-of-canopy (TOC) reflectance. MODIS normalization target 
reflectance data were collected from 2000 to 2009 (10-year) global Terra/ 
MODIS 250 m data 16-day composites (MOD44C, collection 5), provided by 
the University of Maryland. The MODIS spectral bands 1, 2, 6, and 7 were 
chosen to correspond with Landsat bands 3, 4, 5, and 7. To reduce the pres­
ence of clouds and shadows, the mean surface reflectance corresponding 
to the three highest NDVI values from observations with the lowest cloud 
probability over the 2000–2009 interval were used as the normalization tar­
get. We calculated a mean bias between MODIS TOC and Landsat TOA 
reflectance for each spectral band over the land area and used it to adjust 
Landsat reflectance values. A simple empirically derived reflectance differ­
ence threshold was used to avoid areas of rapid land cover or phenological 
change. For tropical areas where the surface anisotropy effect significantly 
hindered image interpretation (Hansen et al. 2008), an additional correc­
tion for  surface anisotropy was implemented. A simple linear regression 
between the MODIS/Landsat reflectance bias (dependent variable) and 
distance from orbit ground track (independent variable) was derived for 
each reflective band and then applied to correct band reflectance values 
within the entire Landsat image. Image normalization was performed 
independently for each spectral band and Landsat image. This fully auto­
mated image  processing approach allowed us to use parallel computing 
methods, reducing the average image processing time to 12 s/image. 

Our approach for image time-series analysis integrates the classic, multidate 
image compositing method (Holben 1986), with the novel approach of using 
multitemporal metrics to characterize reflectance variation within a given 
time interval (Hansen et al. 2003). Image time series were analyzed at per-pixel 
level using all processed Landsat observations for the entire time interval. 
For decadal forest monitoring, two sets of metrics were created for two 5-year 
time intervals: 2001–2005 and 2006–2010. To facilitate data management and 
to allow parallel computing, compositing was performed independently 
for a set of rectangular tiles dividing the entire area of analysis. To create an 
observation “data pool” from which time-sequential composites and spec­
tral metrics could be derived, we preferentially selected observations with 
the least cloud/shadow contamination within the growing season. Growing 
season images are more appropriate for forest cover mapping than imagery 
captured during senescence or dormant periods. Preferential growing season 
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boundaries can be defined either on a per-scene basis (Potapov et al. 2011) or 
on a per-pixel basis using MODIS-derived annual NDVI profiles. To create a 
“data pool,” we analyzed QA flags for all available observations for the pixel. 
A set of criteria were designed to identify observations with the least cloud/ 
shadow contamination to be included in the “data pool.” Because the cloud 
shadow classification model was not tuned to water bodies, pixels with high 
water probability were selected separately. For land pixels, the number of 
growing season cloud/shadow-free observations for each 5-year interval (for 
decadal analysis) was calculated. If no cloud-free observations were found 
for any 5-year time interval, search boundaries were extended first to out-
of- season observations, then to observations with moderate cloud/shadow 
probabilities. After the “data pool” pixels were selected, all other data (flagged 
as having higher cloud/shadow probability or out of season) were excluded 
from further processing. 

The time-sequential image composites derived from the “data pool” obser­
vations represent start/end points for forest cover monitoring analysis and 
have been used for ca. year 2000 forest mapping, for change detection (for 
boreal regions), and for visual image interpretation and mapping of forest 
degradation. Several approaches for image compositing have been tested, 
including single-date compositing and multidate compositing using mean 
(or median) value or NDVI (or selected band reflectance) value ranking 
(Hansen et al. 2008; Potapov et al. 2011). We found that different approaches 
are appropriate for different applications. For change detection, the first/last 
single-date observation compositing was found to be the most suitable as it 
represents the land cover status for the first and last cloud-free image date 
in the “data pool.” For visual interpretation, on the other hand,  multidate 
composites were found to be more suitable due to low noise levels and 
consistent reflectance values within the area of analysis (Potapov et al. 2011). 
Our current automatic image compositing method produces a set of differ­
ent time-sequential composites for use as classification metrics and for visual 
analysis. 

While the time-sequential image composites are invaluable for visual image 
interpretation and for creating classification training sets, they are inade­
quate for forest cover change monitoring in tropical forests. This is because 
the rapid establishment of regrowth obscures the change  signal over decadal 
and mid-decadal time intervals. To highlight reflectance  variation within the 
analyzed time interval, a set of spectral metrics were created from the “data 
pool” observations. These metrics were designed to  capture a generic  feature 
space that facilitates regional-scale mapping and have been used exten­
sively with MODIS and Landsat data (Hansen et al. 2003, 2008, 2010). Three 
groups of per-band metrics were created: (1) reflectance values  representing 
6-year maximum, minimum, and selected percentile  values (10%, 25%, 50%, 
75%, and 90% percentiles); (2)  mean reflectance  values  for observations 
between selected percentiles (for the  min-10%, 10%–25%, 25%–50%, 50%–75%, 
75%–90%, 90%–max, min–max, 10%–90%, and 25%–75% intervals); and 
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(3)  the value of the slope of a  linear regression of band reflectance versus 
image date. Multitemporal metrics were used for forest cover and change 
classification, and selected metrics were employed for visual image analysis 
and creation of training data. 

8.3 National-Scale Forest Cover Extent and Loss Mapping 

Forest cover mapping and change detection was carried out on the basis 
of wall-to-wall image composites using a single national-scale super­
vised classification model. The classification model was built using an 
extensive set of training data collected within the entire area of analysis. 
This approach helped to avoid the problems that arise when a classifi­
cation model based on local training data is extrapolated to neighboring 
images (Wulder et al. 2008). The classification and regression tree (CART) 
algorithm was used as the main tool for image classification and change 
detection. CART is a nonparametric supervised classification model 
constructed to predict the class membership by recursively splitting the 
feature space into a set of nonoverlapping subsets and then reporting the 
class  probability within each subset. The CART algorithm has been shown 
to have a high precision for land cover mapping (Hansen et al. 1996). To 
improve the CART model stability and accuracy, a bootstrap aggregation 
(bagging) algorithm was used that corresponds to a set of trees created 
using random training data subsamples and taking the median class 
likelihood as the final result. Bagged classification tree models for  forest 
cover and change mapping were generated using the training data as the 
dependent variable and multitemporal metrics plus time-sequential image 
composites as independent variables. 

For the purpose of the regional-scale monitoring examples described 
below, forest was defined as having 30% or greater canopy cover for trees 
of 5 m or more in height. Forest cover and forest types were mapped for the 
year 2000, the first year of monitoring. All events resulting in stand replace­
ment at the 60 m pixel scale within the analyzed time interval, including 
clearings (even if followed by forest regrowth within the same time inter­
val), logging, fire, flooding, and storm damage, were mapped together as a 
gross forest cover loss class. Forest cover loss was mapped within the year 
2000 forest mask. For the decadal monitoring, forest cover loss was mapped 
independently for each 5-year interval. To build the classification tree mod­
els for forest cover extent and forest cover loss mapping, a training set was 
manually created by visual interpretation of the region-wide time-sequential 
image composites. A number of additional datasets, including freely avail­
able QuickBird images from GoogleEarthTM and expert information, were 
used as reference materials to aid interpretation. 
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Two examples of region-wide Landsat forest cover mapping and change 
detection projects are briefly described below: one within the boreal and 
temperate forests of European Russia, another within the humid tropical 
forests and dry tropical woodlands of the DRC. 

8.3.1 European Russia Forest Cover and Change Mapping 

The forest cover change analysis from 2000 to 2005 was performed within the 
northern and central administrative regions of European Russia. The area of 
analysis spans from the northern forest–tundra ecotone to the forest–steppe 
boundary in the south and includes a variety of boreal and temperate forest 
types. A total of 7,227 Landsat ETM+ images from 1999 to 2007 were selected 
based on cloud cover and growing season date  criteria. Landsat image 
normalization was performed using a MODIS-derived pan-boreal coniferous 
forest mask as the normalization target. Normalized Landsat images were 
used to create time-sequential image composites for 2000 and 2005 and a set 
of spectral metrics describing reflectance variability within ±1 year of the 
target composite date. For places with persistent cloud cover and/or a limited 
number of observations, images that were acquired more than 1 year before 
or after the target year were used for compositing and metrics. To create the 
image composite, all selected cloud-free observation dates for each pixel were 
ranked based on band 4 values. The image date corresponding to the band 
4 median was chosen as the composite date, and all reflective bands from 
this date were used to create a final ca. 2000 or ca. 2005 image composite. In 
addition to the band 4 median value composites, a set of spectral metrics was 
created on the basis of a band 5 ranking meant to capture reflectance varia­
tion within the growing season. Owing to the time-preferential compositing 
rule, more than 95% of the composite areas for the ca. 2000 and 2005 could 
be created from images acquired within ±1 year of the target year. Less than 
0.5% of the total composite area had to be excluded from analysis due to lack 
of cloud-free observations. Due to the relatively slow reforestation within the 
boreal and temperate forests, we concluded that using the composite differ­
ence would be sufficient for 5-year forest cover loss mapping (Figure 8.2). 

Forest cover for the year 2000 was mapped using Landsat composites 
and metrics for ca. year 2000 supplemented with pixel latitude and MODIS 
annual metrics. The MODIS annual metrics included mean red reflectance 
and NDVI value for the growing season and annual highest red and NIR 
reflectance representing the extent of snow cover during the winter. Forest 
cover within European Russia is generally easily defined and mapped as most 
of the natural or managed forests have high canopy densities. Additional 
MODIS metrics helped improve the forest/nonforest classification within 
wetland forests, the forest–tundra, and the forest–steppe interface. Gross 
forest cover loss from 2000 to 2005 was mapped within the resulting year 
2000 forest mask. All stand-replacing events, whether caused by logging, 
road/pipeline construction, wind throws, stand-replacement forest fires, 
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FIGURE 8.2 
(See color insert.) Forest cover loss monitoring in European Russia. (a) The ca. 2000 region-wide 

Landsat ETM+ image composite. (b–d) Zoom-in example of forest cover and change mapping 

in the Republic of Karelia: b—the ca. year 2000 image composite; c—the ca. year 2005 image 

composite; d—classification result. 

or severe insect outbreaks, were mapped together without any attempt to 
discriminate among them. Within low-intensity selective logging sites, only 
areas with significant forest impact (roads and clearings) were mapped. 

The total forest area within analyzed regions of European Russia was esti­
mated to be 150,228 thousand ha at the time around year 2000. The area of 
forest cover loss from 2000 to 2005 is 2,210 thousand ha, which represents 
a 1.5% of the year 2000 forest cover. Our forest extent estimate is within 1% 
difference with the latest available official forest cover area assessment for year 
2003 (ROSLESINFORG 2003). At the regional level, our forest area  estimates 
are well correlated (R2 of 1.00) with official statistics. A per-pixel valida­
tion with independently derived forest cover mapping results for 23 blocks 
20 km × 20 km in size within the boreal and temperate  forests showed good 
agreement, with an overall forest cover accuracy of 89% (kappa of 0.78) and 
overall change detection accuracy of 98% (kappa of 0.71). A comparison at 
the individual sample block level, however, indicated  relatively high  forest 
cover classification uncertainty along the boreal forest’s northern limit 
(overall accuracy of 87%) and low forest cover loss producer’s accuracy (58%) 
within southern temperate forests featuring small-scale logging. 
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Forest cover loss was distributed unevenly within the administrative 
regions, reflecting several forest management issues. More than 60% of the 
total forest cover loss was found within the largest northern forest regions 
including Arkhangelsk, Kirov, Leningrad, and Vologda Oblast, Komi, and 
Karelia Republics. While regional forest cover loss is linearly related to forest 
area (R2 of 0.84), the Leningrad region had the largest residual value, indicat­
ing a much higher rate of forest cover loss than the general trend within the 
area of study. One-third of the analyzed regions have a percent forest cover 
loss above the average and represent areas of intensive forest harvesting and 
frequent wildfires. These regions are located in the western and central parts 
of European Russia, close to large industrial cities and the Finnish border. 
Regions of eastern European Russia, the Urals, and northern forest–tundra 
transition have the lowest proportional gross forest loss. The three regions 
with the highest proportional forest cover loss are Vladimir, Leningrad, and 
Moscow Oblast (forest loss 3.7%, 3.5%, and 3.1% of year 2000 forest cover, 
respectively) (Figure 8.3). 

The high forest cover loss within Leningrad region is thought to be a con­
sequence of intensive forest harvesting. This is confirmed by official Russian 
forest use statistics for annual timber harvesting. The Leningrad region had 

St. Petersburg 

Moscow 

Low (<1%) 
Medium (1–2%) 
High (>2%) 

FIGURE 8.3 
Forest cover loss intensity in European Russia (percent forest loss 2000–2005 of forest cover for 

year 2000 per administrative region). 
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the highest rate of timber removal of all analyzed administrative regions 
in the period from 2000 to 2005 (ROSSTAT 2008). The intensive felling in 
the Leningrad region and the neighboring Karelia Republic (gross forest 
cover loss 1.9% of year 2000 forest cover) is stimulated by the demand from 
the Nordic countries, particularly Finland, for timber from these  border 
regions. The extensive gross forest cover loss due to industrial logging near 
the Russian–Finnish border could result in forest resource depletion and 
consequent environmental and social problems if not compensated by forest 
restoration. 

While the gross forest cover loss in the Leningrad region was connected 
mainly with industrial timber harvesting, the forest loss in the Moscow 
and Vladimir regions is a consequence of several factors, including log­
ging (partly illegal), insect outbreaks, human-caused fires, and expansion 
of settlements. The single largest forest cover loss event within these regions 
was due to the forest fires of year 2002. While in general wildfires play a com­
paratively small role in the forest dynamics within European Russia, severe 
drought conditions and human-induced fires led to extensive forest loss 
within the central regions of European Russia during the extreme fire season 
of 2002. According to official data, the area of burned forest in the Moscow 
region in 2002 was roughly 10 times higher than the mean annual burned 
area from 1992 to 2005 (ROSSTAT 2008). Another cause of forest cover loss 
around large cities is urban sprawl. For example, the expansion of settle­
ments and industrial facilities around the city of Moscow led to the conver­
sion of about 58 thousand ha of former forest and agriculture lands from 
1998 to 2008 (Karpachevskiy et al. 2009). The forests that remain around large 
industrial cities provide ecological services (e.g., water and air purification, 
natural species refugee, recreation) that are important to urban populations. 
Our results raise concerns about the fate of the remaining forests in the most 
populated regions of European Russia. 

8.3.2 Forest Cover Monitoring in the DRC 

Information on forest cover extent and change is sparse or lacking for the 
DRC due to the vast extent of intact forest landscapes (IFLs), the lack of trans­
portation infrastructure, and the continued political instability, all of which 
limit the possibilities to collect data on the ground. Satellite images are cur­
rently the only viable data source for national level mapping. We employed 
wall-to-wall Landsat imagery to map forest cover for the year 2000 and the 
gross forest cover loss between 2000 and 2010. The analysis was performed 
in partnership with Observatoire satellital des forêts d’Afrique central 
(OSFAC), a local nongovernmental organization supported by the Central 
Africa Regional Program for the Environment (CARPE) project of the United 
States Agency for International Development (USAID). 

A total of 8,881 Landsat ETM+ images were selected, downloaded, and 
processed to create complete national-scale image composites and metrics. 
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About 99.6% of the country was covered by cloud-free Landsat observa­
tions. Gaps due to persistent cloud cover were located primarily in the 
coastal areas of the lower Congo River. The data gaps were mostly due to 
an insufficient number of cloud-free observations. Even though most of the 
available Landsat 7 observations (82%) were captured during the 11 years 
of observation in coastal areas, few of them were more than 50% cloud free 
for more than a quarter of a scene. This shows that data from a single sen­
sor is often insufficient for monitoring forests in persistently cloudy tropical 
regions. A constellation of sensors with similar spectral and spatial resolu­
tion but varying overpass time and orbital cycle would be needed to provide 
sufficient observational coverage. 

Forest cover and forest types were mapped for ca. year 2000. Forest cover 
classes included humid tropical forests (defined as having greater than 60% 
canopy cover) and woodlands (canopy cover between 30% and 60%). Humid 
tropical forests were additionally stratified into primary (mature) forests and 
secondary forests (regrowing after stand-replacement disturbance). A generic 
forest cover class category was mapped, and within this layer primary and 
secondary humid tropical forest classes were subsequently characterized. 
After mapping humid tropical forest classes, the remaining forest cover was 
assigned to the woodland class. Gross forest cover loss from 2000 to 2005  
was mapped within the generic year 2000 forest mask, and forest cover loss 
2005–2010 was mapped within the remaining forest area of 2005 (Figure 8.4). 

The total forest cover extent in the DRC was estimated to be 159,529 
thousand ha, which is within 1.5% of the FAO FRA estimate for year 2000. 
Primary and secondary humid tropical forests predominate (66% and 11% 
of total forest cover extent, respectively), with woodlands occupying the 
remaining 23%. The gross forest cover loss from 2000 to 2010 was 3,712 
thousand ha or 2.3% of year 2000 forest area. About 57% of this loss occurred 
in secondary humid forests, 29% in primary humid forests, and 14% in wood­
lands. Secondary humid tropical forests experienced the most intensive loss 
(11.6% over 10 years), while the rate of loss in primary humid tropical forests 
and woodlands was considerably lower (1.0% and 1.4%, respectively). The 
gross forest cover increased by 14% between the 2000–2005 and the  2005–2010 
periods. The increase was most prominent in primary humid tropical forests 
and woodlands (by 91% and 63%, respectively). 

Visual examination of Landsat composite data suggests that almost all 
forest clearing was associated with the expansion of subsistence agricul­
ture, local charcoal production, or mining. We found no evidence of major 
forest fires or windthrow events during the study period, with the excep­
tion of forest fires caused by the repeated eruptions of the Nyamuragira  
volcano. Clearings are common in secondary humid tropical forests due to 
the practice of rotational slash-and-burn agriculture. On the one hand, the 
fallow period between clearings (not quantified in this study) would be a 
useful indicator of land degradation. Clearing of primary forests, on the  
other hand, represents the expansion of agriculture into heretofore intact 
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FIGURE 8.4 
(See color insert.) Forest cover loss monitoring in the DRC. (a) Nation-wide forest cover and 

change mapping result. (b–c) Zoom-in example of forest cover and change mapping around 

Buta: b—ca. year 2010 image composite; c—classification result. 

forests, triggering changes in ecosystem dynamics and loss of floristic and 
faunal biodiversity. Clearing generally occurs in belts around secondary 
forests and roads due to the nearly continuous distribution of popula­
tion along transportation infrastructure (Figure 8.4). Since forest clearing 
is mainly a consequence of small-scale subsistence farming, the change 
patches are small and have a mean area of 1.4 ha. 

Most of the clearing occurred in areas with high population density and 
growth rates, such as Kinshasa, Kasai-Occidental, Sud-Kivu, and Kasai-
Oriental provinces. Large industrial (Tshikapa, Mbuji-Mayi, Kolwezi, 
Lubumbashi) and artisanal mining areas (Kisangani, Beni, Buta) also exhib­
ited intensive forest loss. The intensive forest loss along the boundaries of 
Virunga National Park (NP) in the North Kivu province is related to ongoing 
political unrest. The Virunga NP has the highest loss of primary forest of all 
national parks in the country (0.9%, compared to the mean of 0.4%), making 
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it one of the most threatened natural protection areas. The loss of primary 
forest in protected areas increased by 64% from 2000–2005 to 2005–2010, 
highlighting the pressures and the need to improve the protection and 
management of nature reserves across the country. 

8.4 Global- and National-Scale Forest Degradation Monitoring 

It is well known that forest degradation, including fragmentation of natural 
landscapes, has a negative effect on global climate change and biodiversity 
(Harris 1984). However, forest degradation is a complex concept that is dif­
ficult to define and even more difficult to map. Unlike forest cover extent 
that can be quantified using straightforward biophysical parameters, assess­
ing and monitoring forest degradation is a complicated task due to the great 
variability in the forms, factors, and degrees of human impact. In the late 
1990s, a group of nongovernmental organizations including Greenpeace 
and the World Resources Institute developed a simple yet straightforward 
approach for assessment and monitoring of forest degradation called the 
IFL method (Potapov et al. 2008). An IFL is an unbroken expanse of natural 
ecosystems that shows no signs of significant human activity and is large 
enough to maintain all native biodiversity, including viable populations of 
wide-ranging species. The essence of the IFL method is to use medium spa­
tial resolution satellite imagery to locate IFLs, establish their boundaries, and 
use them as a baseline for monitoring. The IFL method provides a simple 
and feasible way to cope with the complexity of the forest degradation con­
cept by using changes in forest intactness as a proxy for forest degradation 
(Potapov et al. 2009). In this context, forest degradation is defined as a reduc­
tion in the ecological integrity of a forest landscape below a certain threshold 
due to human influence (e.g., conversion, alteration, and fragmentation), and 
forest landscapes are treated as being either intact (undegraded) or nonintact 
(altered or degraded). 

An IFL boundary is defined using a sequence of two sets of criteria spe­
cifically developed for visual interpretation of medium spatial resolution 
satellite imagery. These criteria are globally applicable and easily replica­
ble, allowing for repeated assessments over time as well as verification by 
independent assessments. The first set of criteria is used to eliminate lands 
with evidence of significant human-caused alteration from IFL status. Such 
alteration includes (1) settlements and industrial objects; (2) infrastructure 
used for transportation between settlements or for industrial development 
of natural resources; (3) agriculture and forest plantations; (4) industrial 
activities (including logging, mining, oil and gas exploration or extrac­
tion) during the last 30–70 years; and (5) stand-replacing wildfires during 
the last 30–70 years if located in the vicinity of infrastructure or developed 
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areas. Some alterations, notably low-intensity human impacts that tend to 
occur in the vicinity of settlements and roads (e.g., selective logging and 
overhunting), are not  visible in medium spatial resolution imagery. We, 
therefore, removed such areas by applying a buffer zone around settlements 
and transportation infrastructure, adapting the buffer width to the expected 
extent of human influence. For the global IFL method, a 1 km wide buffer 
was used. The second set of criteria is used to eliminate fragmented lands 
from IFL status by identifying patches of otherwise IFLs that are smaller or 
narrower than a selected threshold value. For the global analysis, a patch 
needed to meet the following criteria to qualify as an IFL: (1) minimal area of 
500 km2, (2) minimal width of at least 10 km (measured as the diameter of the 
largest  circle that can be fitted inside the patch), and (3) at least 2 km wide in 
corridors or appendages to areas that meet the above criteria. 

The IFL method was used to assess the ecological integrity of the world’s 
forest landscapes. First, the current global extent of the forest zone was deter­
mined, defined as lands with at least 20% tree canopy cover (Hansen et al. 2003) 
and including treeless areas that occur naturally within forest ecosystems, such 
as wetlands. The area under consideration was then reduced by identifying and 
eliminating developed areas and infrastructure through visual interpretation 
of Landsat imagery. The global IFL mapping was done before the Landsat data 
archive was opened, and the GeoCover Landsat orthorectified image collection 
was therefore used. A global coverage of Landsat TM data (representing an 
average date of 1990) and ETM+ data (representing an average date of 2000) 
was used to systematically assess candidate IFL areas for human-caused altera­
tion and fragmentation and to delineate IFLs. Fine-scale geospatial datasets on 
roads and settlements were used where available to facilitate interpretation. 
Infrastructure buffering was performed simultaneously with the visual image 
analysis. Altered and fragmented patches were eliminated from the area of 
study and remaining areas, if meeting the criteria, were classified as IFLs. 

The current extent of the world’s forest zone is 5,588 million ha. IFLs make 
up 23.5% of the forest zone (1,313 million ha). The remainder of the forest zone 
is affected by development or fragmentation and thus is either  managed or 
degraded. The vast majority of the world’s remaining IFLs are found within 
humid tropical and boreal forests (45.3% and 43.8% of the total IFL area, 
respectively). The distribution of IFL within these biomes is heterogeneous, 
reflecting differences in the history and intensity of economic development. 
Tropical IFLs are found mainly in the large forest massifs of the Amazon and 
Congo basins, and in insular Southeast Asia. More than half of the IFL area 
in the humid tropics is in the Amazon basin, while IFLs are largely absent 
in the lowlands of continental Asia. In the boreal region, the highest propor­
tion of IFL is in the North. IFLs occupy more than half of the forest zone in 
Canada but have nearly disappeared in Europe due to the long history of 
intensive agriculture and forest management. 

A particular strength of the IFL method is that it can easily be applied 
to different points in time, making it suitable for regular reassessments, 
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i.e., monitoring. The work is conducted through expert-based visual inter­
pretation using the same criteria and the same type of data as in the base­
line assessment (medium spatial resolution satellite imagery) but is much 
less time consuming as only remaining IFLs need to be monitored. We  
used the IFL method to assess change in IFLs from 2000 to 2010 (using 
two 5-year steps) for the three largest tropical forest countries: Brazil, the 
DRC, and Indonesia (Figure 8.5). For the DRC and Indonesia, national 
reassessments were performed using Landsat time-sequential image com­
posites (see Section 8.2), individual Landsat scenes, and ASTER imagery. 
For Brazil, the forest cover loss monitoring results from PRODES (INPE 
2002) were used to update the IFL map. 

Our results show that a significant extent of intact areas has been lost within 
all three countries after year 2000. The total proportion of IFLs lost was 5.2%, 
1.9%, and 10.0% in Brazil, the DRC, and Indonesia, respectively. The IFL loss 
in Brazil is mostly a consequence of agroindustrial development along the 
forest/agriculture boundary of “arc of deforestation.” In the DRC, the loss 
of IFLs is unevenly distributed and located mostly within active timber 
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FIGURE 8.5 
IFL decadal monitoring results for the DRC (a), Brazil (b), and Indonesia (c). 
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concessions (where selective logging is taking place) and in the vicinity of 
growing settlements (where subsistence agriculture, artisanal logging, and 
charcoal production are expanding). Conversion of IFLs to oil palm and tim­
ber plantations is common within the Indonesian lowlands of Sumatra and 
Kalimantan islands, while IFL loss in mountain areas is generally caused by 
selective logging. 

While all analyzed countries experienced reductions of IFL area, the 
change trends are different, as approximated by IFL loss between 2000 and 
2005 and 2006 and 2010. Brazil features a dramatic reduction in overall IFL 
loss from 4.1% during the first 5 years to 1.1% during the second half of the 
decade. In the DRC, the IFL loss rate was relatively stable (1.0% during 2000– 
2005 and 0.9% during 2006–2010). In contrast, the IFL loss rate in Indonesia 
increased from 4.2% to 5.8%. While no special analysis is available to explain 
these trends, we can speculate on their origins based on the global economy 
and the distribution of IFL loss. Undoubtedly, the global financial crisis that 
began in 2007 and followed by the recession during the end of the decade is 
a single most important factor behind the reduction of agroindustrial clear­
ings and timber production worldwide. This crisis was more pronounced 
in Western countries but had consequences also for their main suppliers. 
Brazil  was hit hardest of the three analyzed countries and experienced a 
negative GDP growth rate in 2009 (CIA 2011). The efforts by the Brazilian 
government to reduce forest clearing in the framework of the UN REDD+ 
program and the establishment of an effective deforestation monitoring sys­
tem have likely also played a role. The situation was different in Asian coun­
tries, including Indonesia, where GDP either continued to grow or fell only 
slightly. Indonesia accelerated the conversion of remaining lowland forest 
areas to plantations and expanded selective logging in remote mountain for­
ests, especially in the Papua island group. The IFL change dynamic is com­
plicated in the DRC due to the combination of global economic drivers and 
local political instability. While economic stagnation and years of civil war 
have resulted in a low level of forest clearing in the country, an analysis of 
nature resources management (Endamana et al. 2010) highlighted that there 
was little change in conservation indicators in the Congo basin over the last 
decade. We may conclude that more favorable economic conditions may 
accelerate the loss of IFLs in the DRC, unless improved conservation policies 
are established. 

8.5 Conclusion 

Independent, satellite-based monitoring is an important tool for provid­
ing transparent information on forest change. Government officials, land 
managers, researchers, conservationists, and civil society groups can use 
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such information to make better-informed decisions regarding the manage­
ment of forest ecosystems. We have presented a novel, automated Landsat 
image processing approach that could be used for timely monitoring of 
forest cover change at national scales. This approach is a practical solution 
for examining trends in forest cover change at regional to national scales 
and could be implemented at a fraction of the cost of individual scene 
processing in terms of workload and processing time. Regional monitoring 
has the advantage of providing internally consistent, directly comparable 
results for assessing variation in the spatiotemporal trends of forest cover 
dynamics. 

Landsat-based mapping of forest cover extent and change using super­
vised expert-driven classification is a well-established and accepted 
methodology, and reported accuracies for Landsat forest cover change 
detection range between 75% and 91% (Coppin and Bauer 1994). Our 
Landsat-based mapping algorithm has been tested for large forest regions, 
and our regional-scale Landsat forest cover change results are  comparable 
with NFI data and individual scene supervised characterizations. The 
spatial accuracies of forest cover and change detection have not been 
rigorously validated, however, due to the lack of high spatial resolution 
imagery and field data. In the future, our approach can be validated using a 
series of high spatial resolution data sets. Our results can be used to target 
sampling with high spatial resolution imagery as part of a  national-scale
 validation protocol. 

The application of our forest monitoring approach in different biomes at 
the national/regional scales illustrate the possibility that it can be used also 
at the biome/global scales. Remaining challenges include possible gaps 
in future image availability, insufficient observation frequency for some 
areas, and the lack of a rigorous validation that uses high spatial resolution 
imagery along with field data. These concerns must be addressed before 
the proposed algorithm is implemented further. Yet having the technical 
ability to conduct satellite-based monitoring is not sufficient to detect and 
solve all environmental problems caused by inefficient and irresponsible 
forest management. First, only some components of ecosystem health can 
be monitored from space. Other components such as reductions in biodi­
versity due to overhunting and poaching, effects of chemical pollution, 
and global impact caused by human-induced climate change require a set 
of in situ measurements. Second, the forest management problems that 
are highlighted by monitoring data are sometimes a result of inadequate 
governmental control of natural resources exploitation and/or political and 
economic instability. Weak and/or corrupt governance precludes the main­
tenance of forest ecosystem services and protection of nature conservation 
areas. Integrating the drivers of forest cover change with satellite-based 
forest monitoring methods into national natural resource management 
systems and international conservational initiatives are important future 
steps for national-scale monitoring activities. 
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9.1 Introduction 

The Amazonia region comprises the greatest rain forest of our planet where 
the largest continuous remaining tropical forest can be found. In Brazil, 
an accelerated anthropization process began at the end of the 1960s in 
response to governmental policies to integrate the vast Amazonian region 
with the rest of the country. This was to be achieved mainly through road 
construction and incentivized transmigration policies that consequently 
expanded the Brazilian agriculture frontier. The anthropization process has 
been most intense in the so-called arc of deforestation where the Amazon 
ecosystem meets with the savanna (cerrado) ecosystem. Since 1973, Brazil 
has had access to remote sensing imagery from the series of Landsat sat­
ellites, enabling the quantification of natural resource extent and modifi­
cation over the Amazon region. Based on the availability of these images, 
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the Brazilian government began monitoring of the Amazon forest to quan­
tify deforestation at multiyear intervals. Quantitative data on deforestation 
could then be used to assess the human impacts of the development poli­
cies, with the objective of minimizing the negative effects of the man–biome 
interaction on renewable and  nonrenewable resources. 

Since 1988, the Brazilian government has performed annual monitoring 
of the Amazon forest using Landsat-type imagery through the PRODES 
(monitoring of Amazon forest) project carried out by the Brazilian Institute 
for Space Research (INPE). PRODES has quantified approximately 
750,000 km2 of deforestation in the Brazilian Amazon through the year 2010, 
a total that accounts for approximately 17% of the original forest extent. 
PRODES data have revealed the annual deforestation rates to vary signifi­
cantly in response to domestic political, economic, and financial policies as 
well as foreign market demands. 

PRODES information is based primarily on Landsat imagery. Medium 
spatial resolution (30 m) data such as Landsat have a relatively low tempo­
ral resolution of 16-day repeat coverage, allowing for annual monitoring of 
deforestation. More rapid updating of forest disturbance is not possible with 
Landsat as the infrequent repeat coverage coupled with the persistent cloud 
cover of the humid tropical Amazon basin limits the number of viable land 
surface observations. This fact prevents the government and environment 
control agencies from making fast and adequate interventions to stop illegal 
deforestation activities. 

Near-real-time deforestation monitoring is possible using the almost daily 
images of the MODIS (MODerate resolution Imaging Spectroradiometer) 
sensor on board the Terra and Aqua satellite platforms. Thus, a new method­
ology based on MODIS images was developed for rapid detection of defor­
estation in the Amazon region through the DETER (real-time detection of 
deforestation) project (Shimabukuro et al. 2006). While MODIS is a coarse 
spatial resolution sensor, and not viable for area estimation of deforestation, 
MODIS data can be valuable as a change indicator, or alarm product in the 
service of land management policies and enforcement. 

This chapter presents an overview of the PRODES and DETER projects for 
annual and monthly monitoring of deforestation in the Brazilian Amazon, 
respectively. Initially, the Brazilian Amazon region is characterized in terms 
of its soil, biodiversity, climate, and vegetation followed by the deforestation 
history and the description of the methodology developed at INPE for the 
deforestation monitoring activities based on remote  sensing image- processing 
and geographic information system (GIS) techniques. Results from more than 
three decades of monitoring are presented and discussed, illustrating the 
rapid deforestation that occurred during this period in the Amazon region. 
The results have quantified the magnitude and trends of deforestation in the 
Brazilian Amazon. Results provide an invaluable input to decision makers in 
establishing public policies and enforcing environmental governance in the 
critical ecosystems of the Brazilian Amazon. 
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9.2 Brazilian Amazon 

The Amazon rainforest is located in South America and covers an area of 
6.4 million km2. Most of the Amazon rainforest (63%) is found in the Brazilian 
Legal Amazon (BLA) (Figure 9.1), with the remaining part being distrib­
uted among the countries of Peru, Colombia, Bolivia, Venezuela, Guiana, 
Suriname, Ecuador, and French Guiana. Much attention has been given to 
this region due to its relevance in terms of biodiversity as well its unique 
environmental services at the global scale. 

The BLA is a geopolitical unit, established in 1966 by the Brazilian 
government. The BLA is located between 5° N, 20° S and 44° W, 75° W 
and covers an area of approximately 5 million km2. It encompasses the 
whole states of Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, 
Roraima, Tocantins, and the western part (44° W) of the state of Maranhão 
(IBGE 2000). The BLA is included in the Amazon river basin except for the 
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FIGURE 9.1 
(See color insert.) The BLA (red) located in the South American continent. 
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southern part of Mato Grosso state (Paraguay river basin) and for part of 
Maranhão state (Parnaíba river basin). 

Soils: The Amazon region includes varied soil classes formed under great 
geological diversity, exhibiting significant variation in relief and under the 
influence of high temperatures and precipitation typical for warm super 
humid or humid equatorial climates. The natural soil fertility is relatively 
low; however, the Amazon rainforest is a self-sustainable ecosystem due 
to its own nutrient cycles, making it vulnerable to anthropic interference 
(IBAMA 2009). 

Biodiversity: The Amazon region comprises a large variety of ecosystems 
including upland forests (terra firme), swamp forests (seasonally flooded
 forest—varzeas and permanently flooded forest igapós), grasslands, and 
savannas (cerrado). An extremely rich biodiversity is found within the 
regions, including 1.5 million plant species; 3,000 fish species; 950 types of 
birds; and an enormous amount of insect, reptile, amphibian, and mammal 
species (IBAMA 2009). 

Climate: The Amazon region is characterized by its enormous ability for 
water recycling. About 63%–73% of the water is lost through evapotranspi­
ration, and approximately 50% of it is recycled within the region through  
precipitation (Salati 1985). 

The average temperature varies from 25.8°C during the rainy season (May– 
September) to 27.9°C during the dry season (October–April). The duration of 
these seasons may vary due to the large extent of the Amazon region. The aver­
age annual precipitation is 2,250 mm, varying from 1,500 mm in the northern 
and southern regions to 3,000 mm in the northwestern region of the Amazon. 

Vegetation: The Amazon region is covered by evergreen tropical rainforest 
comprised of three major classes of vegetation: (1) the evergreen tropical forest 
stricto sensu; (2) the semievergreen tropical forest; and (3) the semi deciduous 
tropical forest (IBGE 1988). Evergreen tropical forests stricto sensu are mostly 
found in very moist regions where the annual precipitation is around 3,000 
mm. They are composed of multilayered broadleaf evergreen trees that may 
reach 50 m in height, with a sparse substratum consisting mainly of herba­
ceous plants. Semievergreen tropical forests are spread along less humid areas, 
with annual precipitation varying from 2,000 to 3,000 mm. These forests are 
composed of three-layered formations of perennial and deciduous broadleaf 
trees, with the latter type being sparsely present and forming the top layer of 
the canopy. Semideciduous tropical forests differ from  semievergreen ones by 
having a larger proportion of deciduous species. 

The cerrado is a savanna-type ecosystem appearing mainly in the south­
ern and eastern portions of the Amazon region. It is composed of broadleaf, 
semideciduous, or evergreen short trees typically growing in well-drained 
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soils that are poor in nutrients, in a region where the average annual 
temperature ranges from 20°C to 26°C and annual precipitation ranges from 
1,250 to 2,000 mm with marked influence of the austral winter dry season 
(May through September). In general terms, five structural types of cerrado 
are acknowledged to exist (Oliveira-Filho and Ratter 2002): cerradão—domi­
nated by arboreous vegetation (8–12 m tall) whose canopy covers 50%–90% of 
the area; cerrado (stricto sensu)—dominated by trees and shrubs (3–8 m tall), 
with a more sparse canopy cover (above 30%); campo cerrado—formed by dis­
persed trees and shrubs, with a high density of herbaceous vegetation; campo 
sujo—dominated by herbaceous vegetation, with shrubs and small dispersed 
trees; and campo limpo—which is different from the campo sujo because it has 
no shrubs nor trees. Cerrado may also be associated with seasonally flooded 
areas. In total, the Amazon region has approximately 10%–15% of worldwide 
biomass (Houghton et al. 2001). 

Deforestation in the BLA: Deforestation in the BLA has been a concern of  several 
governmental and nongovernmental agencies, especially over the last three 
decades (Moran 1981; Skole and Tucker 1993). Although there is a  longer 
history of human occupation in the BLA, nearly 90% of the deforestation for 
pasture and agriculture occurred between 1970 and 1988, as indicated by 
estimates based on satellite images (Skole et al. 1994). 

Historically, the Brazilian territory was occupied along the coastline, 
with most of its population concentrated in this region. In an attempt  
to change this occupation pattern by increasing inland settlement, the 
federal capital was moved from the coast (Rio de Janeiro) to the Central 
region of Brazil (Brasília) in the mid-1950s (Mahar 1988). This occupation 
policy required major infrastructure investments to connect Brasília to 
the other regions of Brazil. The construction of the Belém-Brasília road 
(BR-010) in 1958 was the main factor that triggered major deforestation 
activities in the BLA (Moran et al. 1994; Nepstad et al. 1997). Subsequent 
events such as the construction of the BR-364 across the states of Mato  
Grosso, Rondônia, and Acre and the PA-150 in the state of Pará  encouraged 
even more deforestation activities, converting forest into pasture and 
agriculture land (Moran 1993). 

To introduce governance in the BLA, the SUDAM (Superintendência 
do Desenvolvimento da Amazônia) and the BASA (Banco da Amazônia) 
were established in 1966. Small producers were granted with incentives to 
invest in agriculture projects (Moran et al. 1994). Large producers were also 
granted tax incentives in exchange for converting forest to pasture land 
(Moran 1993). The incentives granted to large producers were the major 
drivers of deforestation; small producers had a lesser impact on deforesta­
tion due to the comparatively smaller scale practices of subsistence agricul­
ture (Fearnside 1993). 

Other activities with high economic value such as mining and selective 
logging also contributed to deforestation in the BLA (Cochrane et al. 1999). 
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Major deforestation in the BLA has been concentrated in the
 so-called arc of deforestation, located in the Southern and Eastern parts of 
the BLA from Acre to Maranhão states (Cochrane et al. 1999; Achard et al. 
2002). 

9.3 Deforestation Monitoring in the BLA 

Since the late 1970s, INPE has performed deforestation assessments in the 
BLA using remotely sensed imagery. These assessments were carried out 
together with the former IBDF (Instituto Brasileiro de Desenvolvimento  
Florestal) that was later incorporated with IBAMA (Instituto Brasileiro do 
Meio Ambiente e dos Recursos Naturais Renováveis). The first assessments 
were carried out with the use of images acquired by the MSS sensor (four 
spectral bands with spatial resolution of 80 m) on board the Landsat-1, -2,  
and -3 satellites, during the periods of 1973–1975 and 1975–1978 using visual 
interpretation techniques (Tardin et al. 1980). 

From 1988 onward, annual deforestation assessments were provided  
for the entire BLA using images from the TM sensor (six spectral bands 
with spatial resolution of 30 m) on board the Landsat-5 satellite, with 
improved mapping quality due to its improved spatial and spectral reso­
lutions as compared to the MSS data. The methodology applied to map the 
deforested areas was based on visual interpretation of color composites 
(5R-4G-3B) of TM images in hard copy format at the scale of 1:250,000.  
The visually interpreted polygons of the deforested areas were summed 
up to compute the total deforested land for each state and presented in 
tabular format. This method, known as analog PRODES, was performed 
until 2001. 

By the end of the 1990s, an automated methodology began to be devel­
oped and was named digital PRODES (Shimabukuro et al. 1998). However, 
the deforestation information provided by PRODES was not sufficient for 
the more frequent monitoring surveillance needs of various Brazilian gov­
ernment agencies. Therefore, the DETER project was developed based on the 
high temporal resolution images of the MODIS sensor to provide  geospatial 
information on deforestation activities in near real time and has been in 
operation since 2004. 

9.3.1 Digital PRODES Methodology 

Digital PRODES is the world’s largest remote sensing project for monitoring 
deforestation activities in tropical rain forests. It has the objective to survey 
all deforested areas within the 5 million km2 of the BLA, an area covered by 
229 Landsat scenes (Figure 9.2). 
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FIGURE 9.2 
The BLA covered by 229 TM or ETM+/Landsat images for the annual survey of deforestation. 

(From INPE, Monitoramento da cobertura florestal da Amazônia por satélites: Sistemas PRODES, 
DETER, DEGRAD E QUEIMADAS 2007–2008, Instituto Nacional de Pesquisas Espaciais, São 

José dos Campos, SP, Brazil, 2008; Mahar, D., Government Policies and Deforestation in Brazil’s 
Amazon Region, World Bank, Washington, DC, 1988.) 

PRODES depicts deforestation within the BLA. A mask of nominally intact  
forest is annually updated by identifying new deforestation events to the 
exclusion of nonforest vegetation type and other change dynamics such as  
the clearing of secondary regrowth. Input Landsat TM images are selected  
from July, August, and September acquisitions. This period is  within the  
arc of deforestation’s local dry season and represents an  atmospheric win­
dow where cloud-free images are typically available. These   images are  
rectified using nearest neighbor sampling to a UTM projection, resulting  
in a cartographic product with 50 m internal error. For PRODES, TM 3  
(red), TM   4 (NIR), and TM 5 (MIR) bands are used to generate the frac­
tion images. The legend for the maps contains the following classes: forest,  
non-forest   cerrado arbustivo, campo limpo de cerrado, campinarana, etc.), accu­
mulated deforestation from previous years, deforestation from the current  
year, hydrography, and cloud. 

Digital PRODES consists of the following methodological steps:  
(1)  generation of per pixel vegetation-, soil-, and shade-fractional images;  
(2) segmentation based on growing regions’ algorithm; (3) classification  
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based on nonsupervised classifier; (4) mapping the classes based on 
the following legend: forest, nonforest (vegetation that is not charac­
terized by a forest structure), deforestation (accumulated deforesta­
tion up to the previous year), hydrography, and clouds; and (5) editing 
of classified map based on visual interpretation to minimize omission 
and  commission  errors from the automatic classification to produce 
the  final deforestation map in digital format. PRODES products are 
available at the official PRODES website (http://www.obt.inpe.br/ 
prodes/index.html). 

A linear spectral mixture model (LSMM) is used to produce fraction 
images of vegetation, soil, and shade applied to the TM spectral bands 
(Shimabukuro and Smith 1991). This method reduces data dimensionality 
and enhances the specific targets of interest. A vegetation-fraction image 
enhances the green vegetation, a soil-fraction image enhances bare soil, and 
a shade-fraction image enhances water bodies and burned land. The shade-
fraction image was used to characterize the total previously deforested land 
in the BLA (Shimabukuro et al. 1998) up to 2001. The soil-fraction image 
is used to classify the annual deforested increment based on the contrast 
between forested and deforested land. 

The LSMM can be written as: 

where 
ri is the response for the pixel in band i of TM image 
a, b, and c are the proportion of vegetation, soil, and shade in each pixel 
vegei, soili, and shadei correspond to the spectral responses of each 

component 
ei is the error term for each band i 

Landsat TM bands 3, 4, and 5 are used to form a linear equation system 
that can be solved by any developed algorithm (e.g., weighted least square). 
The resulting fraction images are resampled to a 60 m spatial resolu­
tion in order to minimize computer processing time and disk space, with­
out losing information compatible with the 1:250,000 final product map 
scale. 

Image segmentation is a technique to group the data into contigu­
ous regions having similar spectral characteristics. Two thresholds are 
required to perform image segmentation: (a) similarity, that is the mini­
mum value defined by the user to be considered as similar to form a region 
and (b) area, that is the minimum size given in number of pixels in order 
to be individualized. The unsupervised classification (ISOSEG) method 
is used to classify the segmented fraction images. It uses the statistical 

http://www.obt.inpe.br
http://www.obt.inpe.br
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attributes (mean and covariance matrix) derived from the polygons of the 
image segmentation. 

After the unsupervised classification, it is necessary to check the resulting 
maps. This task is performed by interpreters using interactive image editing 
tools. Color composites of Landsat bands 5, 4, and 3 are displayed in red– 
green–blue videos. Expert-identified omission and commission errors are 
manually corrected in order to improve the classification result. Then the 
individually classified images are mosaicked to generate the final maps per 
state and for the entire BLA. For the state mosaics, the spatial resolution is 
kept at 60 m and the scale for presentation is 1:500,000, while for the BLA 
the spatial resolution is degraded to 120 m and the scale for presentation is 
1:2,500,000. 

9.3.2 DETER  Methodology 

Starting in 2004, the DETER project was implemented to provide a near-
real-time monitoring and detection of deforestation activities to support 
the Federal Government Action Plan for the Prevention and Control of 
Deforestation in the BLA. The procedure mimics the PRODES method but 
is meant to detect deforestation activities in near real time by exploiting the 
high temporal resolution of the MODIS sensor. 

The first step in the method of the DETER project is to mask the intact 
forest based on the PRODES evaluation of the previous year. The map of 
intact forest is used as a reference for identifying new deforestation events 
in near real time throughout the current year. The monitoring activity with 
MODIS imagery begins in January, but becomes more active after March due 
to less cloud cover in the BLA. This does not significantly impact results as 
there is comparatively little deforestation occurring during the rainy season 
(November through March). 

Daily MODIS images (surface reflectance—MOD09) used to identify defor­
estation spots are selected based on two criteria: (a) amount of cloud cover 
and (b) swath within sensor view zenith angle less than 35° (~1,400 km). 
The amount of cloud cover is evaluated based on quick-look images and, if 
deemed viable, a follow-on full spatial resolution assessment. The entire BLA 
is covered by 12 MODIS tiles from V09 to V11 and H10 to H13. 

The images from the MOD09 product are delivered as HDF (hierarchi­
cal data format) files projected in a sinusoidal projection (WGS84 datum). 
All data are converted to a GeoTIFF format and reprojected to the geo­
graphic coordinate system for use in the SPRING software image-process­
ing package. 

From the set of seven reflective bands of the MOD09 product, bands 
1 (red), 2 (NIR), and 6 (MIR) are used to generate the vegetation-, soil-, and 
shade-fraction images, respectively, using the linear spectral mixing model 
as previously described in the digital PRODES method. The soil-fraction 
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images are then segmented, classified, mapped, and eventually edited by 
interpreters following the digital PRODES protocol. 

The above procedure is carried out for every daily MODIS image 
acquired over the BLA. The results of the deforestation activities detected 
by DETER can be accumulated for different intervals such as weekly, 
biweekly, or monthly and are available in a digital format at the DETER 
website (http://www.obt.inpe.br/deter/index.html). 

9.4 Results 

9.4.1 Analog and Digital PRODES 

Tardin et al. (1980) reported that deforestation in the BLA had reached a 
figure of 152,200 km2 in 1978, which included the deforested land prior to 
1960. Since that period, the average rate of deforestation has undergone sig­
nificant changes. For example, from 1978 to 1988, the average deforestation 
rate was 21,130 km2 year–1 while it gradually decreased to 11,130 km2 in 1991. 
After 1991, it began to increase again, reaching a rate of 27,423 km2 in 2004. 
However, an abnormally high rate of 29,059 km2 was also observed in 1995. 
From 2004 on, a significant decrease in deforestation rates was observed, 
with a minimum rate of 7,000 km2 in 2010 (Tables 9.1 and 9.2). This period 
is coincident with the implementation of the DETER project as part of 
the Federal Government Action Plan for the Prevention and Control of 
Deforestation in BLA. 

Since the implementation of the digital PRODES method in 2002, the defor­
estation results are immediately provided to government agencies to imple­
ment policies that enforce the reduction of illegal deforestation. The PRODES 
results are available to the public at the Web site, and the main data on 
deforestation over the last 8 years are shown in Table 9.2. 

Figure 9.3 illustrates the annual deforestation rates from 1988 to 2010 for 
the BLA. 

Figure 9.4 presents the thematic map of the PRODES classes, showing the 
spatial distribution of the deforested areas up to 2010; note the concentration 
of forest loss in the arc of deforestation. 

The remote sensing images acquired since the early 1970s proved to be an 
important tool for monitoring the deforestation in the entire BLA and largely 
coincide with enactment of policies by the Brazilian government to promote 
the occupation of the region. Spatiotemporal data on deforestation rates have 
significantly contributed not only to government policies in reducing illegal 
deforestation activities, but also to the scientific community and the study 
of human impacts on biodiversity, greenhouse gases emission, and regional 
and global climate change. 

http://www.obt.inpe.br
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TABLE 9.2 

Deforestation Estimates (km2) from the Digital PRODES from 2002 to 2009 

States/Year 2002 2003 2004 2005 2006 2007 2008 2009 

Acre 883 1,078 728 592 398 184 254 211 

Amazonas 885 1,558 1,232 775 788 610 604 406 

Amapá – 25 46 33 30 39 100 – 

Maranhão 1,014 993 755 922 651 613 1,272 980 

Mato Grosso 7,892 10,405 11,814 7,145 4,333 2,678 3,258 1,047 

Pará 7,324 6,996 8,521 5,731 5,505 5,425 5,606 3,687 

Rondônia 3,099 3,597 3,858 3,244 2,049 1,611 1,136 505 

Roraima 84 439 311 133 231 309 574 116 

Tocantins 212 156 158 271 124 63 107 56 

Brazilian Amazon 21,394 25,247 27,423 18,846 14,109 11,532 12,911 7,008 

FIGURE 9.3 
Variation of deforested areas during 1988–2010 time period for the Brazilian Amazonia region. 

9.4.2 DETER Project 

Figure 9.5 presents an example of the DETER monitoring results, showing 
the spatial distribution of the deforestation activities detected on a monthly 
basis for 2004. 

The DETER system provides a near-real-time monitoring procedure to 
support the Federal Government Action Plan for the Prevention and Control 
of Deforestation in BLA since 2004, when a significant reduction in the defor­
estation rate started to be observed (Figure 9.3). DETER products are not 
used to estimate areas of deforestation but as an alarm to inform govern­
ment agencies on potential illegal forest-clearing activities in the BLA. The 
availability of the high temporal resolution images from the MODIS sensor 
enables monthly reporting of forest loss alarms and has contributed to slow­
ing illegal deforestation activities in the BLA. 
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FIGURE 9.5 
(See color insert.) Illustration of the example of DETER project results, showing the deforested 

areas detected during the year 2004. 

9.5 Discussion and Conclusion 

The initial monitoring of deforestation activities in BLA was performed by the 
analog PRODES product that was based on visual interpretation of hard copies 
of Landsat scenes at the scale of 1:250,000. This was an expensive and tedious 
procedure carried out by numerous interpreters on a yearly basis. However, it 
produced valuable information on deforestations rates until the 2001. 

In 2002, the analog PRODES was replaced by the digital PRODES  product 
that employs a semiautomatic method based on digital image-processing 
techniques and minor visual interpretation to correct for  classification 
errors. The great advantage of digital PRODES is the provision of defores­
tation information in a compatible format for use in GIS for ecosystem and 
land use and cover change modeling. However, the annual frequency of 
deforestation estimates was insufficient to support other government 
needs, specifically that of reducing illegal deforestation activities. 

As a consequence, the DETER project was implemented in 2004 to rein­
force public policies that have helped to reduce the deforestation rates from 
27,423 km2 in 2004 to 7,000 km2 in 2010. It is important to mention that the 
DETER does not replace but complements the digital PRODES monitoring 
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procedure. The DETER detects deforestation activities in its initial stage 
without providing an area estimate, while the digital PRODES evaluates the 
total annual deforested area (INPE 2008). 

The long-term history of the images acquired by the sensors on board the 
Landsat satellites proved to be an essential tool for monitoring the annual 
deforestation of the BLA. The Landsat record covers the majority of the 
period since the Brazilian government initially incentivized settlement of the 
BLA. The high temporal resolution of the MODIS sensor on board the Terra 
and Aqua platforms was also highly relevant to support government policies 
in stopping illegal deforestation. The result has been a consequent reduc­
tion of deforestation rates aided by the combined information from both the 
DETER and PRODES projects. 
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10 
Monitoring of Forest Degradation: 

A Review of Methods in the Amazon Basin
 

Carlos Souza, Jr. 

Amazon Institute of People and the Environment 

CONTENTS 

10.1	 Introduction 

Forest degradation is an anthropogenic process that can lead to signifi­
cant carbon loss from forests to the atmosphere. Measuring and mapping 
of forest degradation have become important tasks for advancing carbon 
payment negotiations through the reducing emissions from deforestation 
and degradation (REDD+) process (Herold et  al. 2011). The forests of the 
Brazilian Amazon are significantly impacted by forest degradation due to 
three main processes: selective logging, forest fires, and forest fragmentation. 
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These degradation dynamics operate synergistically and recurrently, result­
ing in the loss of original carbon stocks of intact forests. In extreme cases, 
forest degradation can lead to a  complete conversion of forests to other land 
cover types (i.e., pasture or agriculture lands). However, it is more common 
for forests to remain nominally as forests, but with a reduced carbon stock 
and altered biodiversity and forest structure. 

The annual area of selectively logged forest in the Brazilian Amazon is as 
large as that cleared by deforestation (Nepstad et al. 1999; Asner et al. 2005). 
Due to the significance of this disturbance dynamic to forest structure in 
the Amazon basin, several remote sensing techniques have been tested and 
developed to detect, measure, and map the areal extent of forest degradation 
(Souza and Barreto 2000; Asner et  al. 2002; Souza et  al. 2005a; Matricardi 
et al. 2007). Selective logging has also been studied in the Brazilian Amazon 
in terms of its ecological impacts, including changes in carbon stocks, biodi­
versity loss, soil compaction, forest microclimate, and biogeochemical cycles 
(Verissimo et al. 1992, 1995; Johns et al. 1996; Pereira et al. 2002). 

Forest fires (Cochrane et al. 1999; Alencar et al. 2004) and forest fragmenta­
tion (Laurance et al. 2000, 2002) have also received great scientific attention, 
including studies of the synergism between these two processes (Cochrane 
2001; Cochrane and Laurance 2002). The synergism between selective logging 
and forest fires is also well understood (Holdsworth and Uhl 1997; Nepstad 
et al. 1999). Remote sensing techniques to map forest fragments (FFs) have 
been developed since the early 1990s (Skole and Tucker 1993). However, map­
ping burned area extent is more challenging as ground fires result only in 
degradation of forest understory. Moreover, fire is often related to forests 
that have been previously logged, further complicating their quantification 
and unique contribution to emissions. 

A host of ecological and remote sensing studies of forest degradation have 
been conducted in the Brazilian Amazon, making the region a suitable area 
for a review and evaluation of optical remote-sensing techniques for REDD+ 
projects. Presenting a review of these remote-sensing techniques is the first 
objective of this chapter. By definition, REDD+ includes both forest conver­
sion as well as forest degradation, and the Brazilian Amazon is the only 
tropical forest where both deforestation and forest degradation have been 
studied in great detail. The second objective of this chapter is to demonstrate 
how remote sensing techniques can be integrated with forest biomass field 
measurements to construct reliable baselines of carbon emissions associated 
with forest degradation. In order to achieve these objectives, the chapter is 
divided into three sections. The first section presents a summary of forest 
degradation processes and their impacts on forest carbon stocks and includes 
an evaluation of those attributes of forest degradation that can be quantified 
using remotely sensed data. In the second section, the optical remote sens­
ing techniques available for detecting and mapping forest degradation are 
presented in detail, including a discussion of their strengths and limitations 
when applied to mapping changes in forest carbon stocks. The last session 
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presents a framework for integrating deforestation and forest degradation 
monitoring activities in developing baselines for REDD+. 

10.2  Field Characterization of Forest Degradation 

10.2.1 Definition 

Forest degradation is a temporary or permanent change in density, composi­
tion, or structure of natural forest attributes caused by anthropogenic factors. 
Forest degradation differs from forest changes caused by natural  phenomena, 
such as natural tree falls, windthrows, and lightning strikes, as these changes 
in forest attributes are not human induced (Lambin 1999). Several  ecological 
field studies conducted in the Brazilian Amazon have shown that selective 
logging, forest fires, and forest fragmentation are the main processes respon­
sible for forest degradation (Verissimo et  al. 1992; Barros and Uhl 1995; 
Holdsworth and Uhl 1997; Cochrane et al. 1999; Cochrane and Laurance 2002). 
Forest degradation processes operate at different intensities and time scales, 
creating a continuum from intact forests to degraded forests to  complete 
stand replacement and conversion (Figure 10.1). Defining the types of forest 
attributes affected by degradation processes is important, as is assessing the 
capabilities of remote sensing in measuring changes to these attributes. 

In the Brazilian Amazon, logging creates small clearings, known as log 
landings or logging decks, varying in size from 40 to 190 m2. Log landings 
are connected by primary logging roads that can be 6–15 m wide and account 
for additional clearings of 60–567 m2 per hectare. These roads give access to 
harvesting areas through secondary roads and/or skid trails. Tree fall gaps 
are commonly found in forest areas where commercial tree species are har­
vested, given that vine cutting is not a widespread practice in this region. 
High tree diameters (i.e., diameter at breast height [DBH] > 45 cm) are usu­
ally taken in the first harvesting cycle, but recurrent logging cycles can occur 
as smaller trees are successively harvested (i.e., 15 < DBH < 45 cm) (Figure 
10.1). The harvesting intensity varies from 1 to 9 trees per hectare (Verissimo 
et al. 1992, 1995; Barros and Uhl 1995; Johns et al. 1996; Pereira et al. 2002). 

It is well established that logging leads to favorable conditions for burn­
ing forests. Logging creates canopy gaps that allow penetration of more 
incoming solar radiation into the understory environment. As result, 
understory humidity is reduced, drying out remaining logging debris or 
slash. Agriculture fires can unintentionally escape to adjacent logged forests 
(Holdsworth and Uhl 1997). Similar to logging, forest fires can also reoccur 
in the same forest, creating a positive feedback in increasing forest degrada­
tion (Cochrane et al. 1999; Cochrane and Schulze 1999) (Figure 10.1). 

Several logging cycles and fire events can drastically deplete forest carbon 
stocks to carbon density levels similar to those of a deforested area. However, 
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FIGURE 10.1 
(See color insert.) Forest degradation processes and interactions commonly found in the 

Brazilian Amazon. Pristine forests can be subject to selective logging, creating favorable condi­

tions for burning when fires from adjacent agriculture fields unintentionally escape. Logging 

and fires can be recurrent, creating highly degraded forests. Eventually, degraded forests can be 

converted by deforestation, increasing forest edges and landscape fragmentation. If degraded 

forests are not cleared, vegetation regeneration processes can prevail given the high resiliency 

of forests. 

before this occurs, it is more common for degraded forests to be cleared. The 
fate of degraded forests in the Brazilian Amazon varies across the region. 
In areas close to deforestation frontiers, degraded forests are more likely to 
be cleared within 5–10 years, a process that increases forest edges and land­
scape fragmentation (Asner et al. 2005) (Figure 10.1). The degraded forests 
that are not converted by deforestation may regenerate, returning to their 
original carbon stocks after several decades. However, the original species 
composition may not be restored due to local extinctions (Figure 10.1). 

10.2.2 Types of Degraded Forests 

As discussed above, forest degradation creates a continuum from intact for­
est to clearings. But, for mapping purposes a typology of classes is required. 
Here, degraded forests are classified in terms of the processes and intensi­
ties associated with degradation (Souza et al. 2009). The first type of degraded 
forests in the Brazilian Amazon is logged forests. Three types of selectively 
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logged forests have been identified in this region: nonmechanized logging 
(NML), managed logging (ML), and conventional logging (CL). Agricultural 
fires are more likely to burn forests that experienced CL. CL forests have favor­
able conditions for burning due to a greater amount of slash and collateral 
canopy damage. Fires in logged forests lead to a new class of forest degrada­
tion named burned forest (BF). Finally, forest patches of different sizes can be 
isolated due to landscape fragmentation. The resulting FF class has often been 
subject to logging and/or fire. Thus, a suitable classification scheme to char­
acterize forest degradation in the Brazilian Amazon based on field ecological 
studies, associated with different processes and their interactions (Figure 10.1), 
and covering a spectrum of intensity, can be proposed as follows: 

r� Undisturbed forest (UF): Old-growth intact forest dominated by 
shade-tolerant tree species and original carbon stocks. 

r� NML: Logged forest without the use of heavy vehicles such as 
skidders and trucks, also known as traditional logging. Logging 
infrastructure (log landings, roads, and skid trails) are not built. 

r� ML: Planned selective logging where a tree inventory is conducted, 
followed by road and log landing planning to reduce harvesting 
impacts. 

r� CL: Conventional unplanned selective logging using skidders and 
trucks. Log landings, roads, and skid trails are built causing exten­
sive canopy damage. Low-intensity understory burning may occur, 
but forest canopy is not burned. 

r� BF: Either NML or logged forests (ML and CL) where forest canopy 
has been intensively burned. 

r� FF: Isolated forest patches created by deforestation with abrupt 
changes on edges to pasture and agriculture lands, or with partial 
transitional edges to secondary forests. Fragments in the study area 
are usually subject to recurrent NML and fires. 

10.2.3  Attributes of Degraded Forests Detectable Using Remote Sensing 

At the field scale, logged forests are composed of three main environments: 
(1) forest islands that were not disturbed due to poor access imposed by dif­
ficult topography and rivers, or a lack of commercial timber species; (2) areas 
where the forest has been cleared to create roads for machine movements 
(skidders and trucks) and log landings to store the harvested timber; and 
(3) canopy-damaged forests (i.e., harvested areas and areas damaged by tree 
falls and machine movements) (Souza and Roberts 2005) (Figure 10.2). All 
of these environments can be found in the ML and CL classes, but the dif­
ference is that in ML, reduced impact logging practices are conducted to 
reduce direct and collateral damages (Johns et al. 1996; Pereira et al. 2002). 
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FIGURE 10.2 
(See color insert.) Very high spatial resolution false-color infrared IKONOS image showing 

the different environments commonly found in logged and burned (LB) forests in the eastern 

Brazilian Amazon. At 1 m spatial resolution, log landings, logging roads, tree fall canopy gaps, 

and forest edges can be identified as well as “islands” of UFs and signs of regeneration. Signs 

of forest erosion along the edges between the LB forest and the recently slashed-and-burned 

forest can also be observed. (From Souza, C.M. and Roberts, D., Int. J. Remote Sens., 26, 425, 2005.) 

For these two classes, logging harvesting intensity varies from 30 to 40 m3 of 
logs per hectare (Verissimo et al. 1992; Johns et al. 1996). The NML class does 
not feature the various logging environments described above as no heavy 
machinery is used to harvest trees and a low harvest intensity is practiced 
(i.e., 5–10 m3 of logs per hectare). When fires penetrate logged forests, unde­
tected damage under the canopy is expected. Prolonged and more intense 
fires can damage the tree canopy, exposing tree branches and trunks and 
making remote  sensing detectability possible (Souza and Roberts 2005). 

Tree inventories and forest impact measurements have been conducted to 
characterize forest degradation caused by selective logging (Verissimo et al. 1992; 
Johns et al. 1996; Pereira et al. 2002). Gerwing’s (2002) was the first study in the 
Brazilian Amazon that proposed an all-encompassing approach to characterize 
the biophysical properties of a range of degraded forests. Slightly different forest 
degradation classes were proposed for this study. For example, repeated logging 
and burning were placed in separate classes. Our research group has adjusted 
Gerwing’s method to characterize classes of forest degradation that can be easily 
integrated with remotely sensed measurements (Souza et al. 2005a, 2009). 

The forest survey proposed by Gerwing (2002) consisted of measuring 
all trees with DBH >10 cm along transects of 10 m × 500 m (i.e., 0.5 ha). 
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Moreover, subparcels (10 m × 10 m; 0.1 ha) were established at every 50 m 
along transects, and all trees <10 cm DBH were surveyed. Logging and/ 
or burning impacts were measured in the subparcels, including ground 
cover, and canopy gaps were estimated using a hemispherical lens and den­
sitometer. Aboveground live and dead biomass pools were estimated for 
trees >10 cm DBH for each transect using tree inventory data and  available 
allometric equations. Ancillary information about land use and distur­
bance history (i.e., time since last disturbance, number of times the area was 
disturbed) was collected during the field surveys. The forest transects were 
randomly defined in the field, and more than three must be conducted per 
class of degraded forest. 

10.2.4 Ecological  Impacts 

Field ecological studies have provided the foundation for understanding 
the structural and compositional changes caused by forest degradation pro­
cesses on pristine UFs. For remote sensing detection of forest degradation 
impacts, the following attributes are relevant: (1) ground cover comprised 
of intact vegetation, wood debris, and disturbed soils; (2) canopy cover; 
and  (3)  aboveground live biomass (AGLB). Our research group has con­
ducted more than 100 transects in the Brazilian Amazon using an adaptation 
of Gerwing’s methodology to link field measurements with remotely sensed 
data (Souza et al. 2005b, 2009). We have observed that for a single degradation 
event, intact vegetation and canopy cover decrease with an increase in for­
est degradation intensity by 20% and 60%, respectively. Conversely, soil dis­
turbance and wood debris increase by 10% and 40%, respectively. However, 
when repeated degradation events are considered, these impacts tend to be 
more drastic. For example, repeated logging in the eastern Amazon region 
can disturb up to 70% of the original vegetation and deplete up to 40% of the 
original canopy cover (Gerwing 2002). 

The forest structure changes caused by the forest degradation processes 
described above affect species composition and carbon stocks of UFs. The 
mean AGLB of UF obtained for our transect measurements was 377 Mg per 
hectare, with minimum biomass for the Ji-Paraná site (273 Mg per hectare) 
and maximum for Santarém (497 Mg per hectare). This result is compatible 
with field AGLB estimates using very large forest plots (Keller et al. 2001) and 
within the range of average values reported for the Brazilian Amazon region 
(Malhi et al. 2006; Saatchi et al. 2007). Using the mean AGLB obtained with 
our transects and assuming that carbon makes up 50% of the forest biomass, 
we can then demonstrate how carbon stocks vary with degradation inten­
sity (Figure 10.3). A trend of reduced carbon stocks in pristine UF undergo­
ing forest degradation processes has been observed. The more significant 
change is when UF is fragmented or burned, leading to respective 28% and 
30% reductions in carbon stocks relative to original UF stocks. NML, ML,  
and CL degradation classes each experienced a <10% carbon loss. The carbon 
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FIGURE 10.3 
Change in aboveground live biomass as a function of degradation intensity. Bars represent 

standard error of the mean value and lines represent the percent change of C mean relative 

to intact forest. (From Souza, C. et al., Integrating forest transects and remote sensing data 

to quantify carbon loss due to forest degradation in the Brazilian Amazon. In Case Studies on 
Measuring and Assessing Forest Degradation. Forest Resources Assessment Working Paper 161, 

FAO, Rome, 20 p., 2009.) 

stock changes presented in Figure 10.3 are for one event of forest degradation 
only. When considering recurrent forest degradation events, carbon stocks 
can be reduced by up to 50% (Gerwing 2002). 

10.3  Remote Sensing of Forest Degradation 

Detecting and mapping forest degradation with optical remotely sensed data 
is more complicated than mapping forest clearings by deforestation because 
degraded forest “pixels” are complex environments with mixtures of dif­
ferent land cover materials (i.e., vegetation, dead trees, bark, tree branches, 
soil, shade; Figure 10.1 [Souza and Roberts 2005]). Furthermore, signs of for­
est degradation disappear within 1–2 years due to rapid canopy closure and 
understory revegetation, making spectral characteristics of degraded forests 
similar to that of UFs (Stone and Lefebvre 1998; Asner et al. 2004a,b; Souza 
et al. 2005a, 2009). 

The first attempts to map degraded forests in the Brazilian Amazon 
focused on detecting the processes responsible for degradation. Mapping 
selective logging received considerable attention, given its large extent 
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and negative ecological impacts. The annual logged area in this region has 
been considered as large as the annually deforested area, with first esti­
mates coming from socioeconomic field surveys (Nepstad et al. 1999) and 
the following ones based on satellite imagery (Asner et al. 2005; Matricardi 
et al. 2007). Techniques to map forest fire scars have also been developed, 
and forest fragmentation can be mapped with traditional techniques used 
to map deforestation. More recently, an all-encompassing approach for 
mapping forest canopy damage caused by these degradation processes 
has been proposed. Techniques for doing so are discussed in the follow­
ing sections. 

10.3.1  Remote Sensing Approaches to Mapping Selective Logging 

Several remote sensing techniques were tested and applied to local and 
regional scale studies in the Amazon region to map selectively logged forests 
(Table 10.1). These techniques can be grouped in terms of mapping goals and 
methods utilized. In terms of mapping goals, some techniques were devel­
oped to map the total forest area affected by logging, which includes forest 
canopy damage and forest clearings created by log landings and roads, and to 
map intact forest islands surrounded by logging infrastructure and canopy-
damaged areas. The second mapping goal focused on the mapping of areas 
with forest canopy damage only (i.e., intact forest islands were not included). 
In terms of methods for mapping logging, visual interpretation, semiauto­
mated, and automated techniques have been tested (Table 10.1), and most of 
them can be applied to different spatial and spectral resolution sensors. 

At high spatial resolutions (i.e., <5  m pixel size), images acquired by 
either space-borne or aerial platforms are viable for small-area analyses. 
Most of the features found in logging environments (i.e., roads, log land­
ings, tree fall gaps, and UF islands) can be easily identified at this scale 
(Figure 10.1). Fusion techniques of panchromatic and multispectral images 
are commonly applied to enhance the imagery (Read et al. 2003; Souza and 
Roberts 2005), and visual interpretation is the most common mapping tech­
nique used. However, given the cost for image acquisition and interpreta­
tion, their use in mapping and monitoring logging is limited. For these 
reasons, the methods presented in the following sections focus only on 
medium spatial resolution imagery (i.e., 10–60 m pixel size). These data are 
freely available and are regularly acquired, unlike higher spatial resolution 
commercial data sets. 

10.3.1.1 Visual Interpretation 

Watrin and Rocha (1992) pioneered the use of satellite images to map selec­
tive logging in the Amazon region. Their work focused on Paragominas 
municipality, which was the most important logging center of the Brazilian 
Amazon from 1985 to 1995 (Verissimo et al. 1992). This study used printouts 
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of Landsat TM5 bands 4 and 5 acquired in 1988 to first visually identify and 
trace on overlay paper the boundaries of selectively logged areas. Next, the 
resulting polygons were hand digitized using a geographic information 
system (GIS) at 1:100,000 scale. The authors used the boundaries of forest 
scars created by roads, log landings, and canopy-damaged areas as the 
criteria for defining logged areas. Stone and Lefebvre (1998) also used visual 
interpretation of Landsat TM5 data to map logged forests in Paragominas 
for 1986, 1988, 1991, and 1995. In 2001, a large-scale study was conducted to 
map selective logging of the Brazilian Amazon using visual interpretation 
of Landsat TM5 digital imagery. In this study, Santos et al. (2001) mapped 
logged forests at a 1:250,000 scale and estimated an average of 1,580 km2 per 
year for the period 1988–1998. 

There are drawbacks to the use of visual interpretation for mapping 
selective logging. First, defining the boundary of logged and UFs is not 
always straightforward, even when using more detailed imagery such as  
IKONOS (Read et al. 2003; Souza and Roberts 2005). Second, there is some 
level of subjectivity in defining forest degradation created by logging and 
forest fires; none of the studies that used visual interpretation methods 
define rigorous criteria for separating these two causes of forest degradation. 
Third, visual interpretation is labor intensive and may be cost prohibitive for 
operational forest monitoring projects (Table 10.1). 

10.3.1.2 Combining Remote Sensing and GIS 

The need for a faster, cheaper, and replicable method to detect and map 
selective logging has driven the development of automated techniques. The 
first attempt combined automated detection of log landings from soil frac­
tion derived from a spectral mixture analysis (SMA; covered in detail later) 
applied to Landsat images followed by the application of buffer regions 
(Souza and Barreto 2000). This technique requires field measurements to 
estimate harvesting radius from log landings in order to define the buffer 
radius. For tropical dense forest of the eastern Amazon and open forests of 
the  central–southern region, buffer sizes were 180 m (Souza and Barreto 2000) 
and 350 m (Monteiro et al. 2003), respectively; both are considered local stud­
ies. Matricardi et  al. (2001) used this buffer approach (with fixed radius of  
180 m) to estimate selective logging impact over the Brazilian Amazon, dif­
fering with the use of texture measures applied to Landstat TM5 bands 3–5 to 
detect log landings. This large-scale study estimated an annual average area 
affected by logging of 4,690 km2 per year for the period 1992–1999. This result 
is almost three times the one obtained by visual interpretation (Santos et al. 
2001), though the product is at a more detailed scale (1:50,000) (Table 10.1). 

The buffer technique for estimating logging areas also has limitations. Logging 
buffers are not fixed, and neither circular (Souza and Barreto 2000) nor squared 
buffers (Monteiro et al. 2003) adequately capture logged areas. The area affected 
by logging in most cases did not follow the contours of the buffer regions, 
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resulting in commission and omission classification errors. To overcome this 
problem, a technique that uses region growth algorithms from log landings was 
proposed (Graça et al. 2005) to map canopy-damaged areas (Table 10.1). 

10.3.1.3 SMA 

Studies in the Brazilian Amazon have shown that Landsat reflectance data 
have limited the capacity for detecting logged forests, with bands 3 and 5 pro­
viding the best spectral contrast between logged and intact forests (Stone 
and Lefebvre 1998; Asner et al. 2002; Souza et al. 2005a). Vegetation indices 
and texture filters also showed some potential for detection of canopy dam­
age created by logging (Asner et al. 2002; Souza et al. 2005a), but are more 
useful for enhancing logging infrastructure using Landsat band 5 (i.e., roads 
and log landings; Matricardi et al. 2007) (Table 10.1). 

Alternatively, SMA has been proposed to overcome the challenge of using 
whole-pixel information to detect and classify logged forests. Landsat pix­
els typically contain a mixture of land cover components (Adams et  al. 
1995). In logged forests (and also in BF and forest edges), mixed pixels pre­
dominate and are expected to have a combination of green vegetation (GV), 
soil, nonphotosynthetic vegetation (NPV), and shade-covered materials. 
Therefore, fractional images derived from SMA analyses have the potential 
to enhance the detectability of logging infrastructure and canopy damage 
within degraded forests. For example, soil fractions enhance log landings 
and logging roads (Souza and Barreto 2000), while NPV fractions enhance 
forest-damaged areas (Cochrane and Souza 1998; Souza et al. 2003), and GV 
highlights forest canopy gaps (Asner et al. 2004a). 

In SMA, the Landsat TM/ETM+ reflectance data of each pixel can be bro­
ken down into GV, NPV, soil, and shade fractions, which are the expected 
materials found in pixels within areas of forest degradation. The SMA model 
assumes that the image spectra are formed by a linear combination of n pure 
spectra, referred to as endmembers (Adams et al. 1995), such that: 

where 
Rb is the reflectance in band b 
Ri,b is the reflectance for endmember i, in band b 
Fi the fraction of endmember i 
εb is the residual error for each band 
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The SMA model error is estimated for each image pixel by computing the 
root mean square (RMS) error, given by: 

The identification of the nature and number of pure spectra (i.e., endmem­
bers) in the image scene is an important step in obtaining correct SMA 
models. Two approaches have been proposed to define endmembers. First, 
reflectance spectra can be acquired at the field level with a handheld spec­
trometer (Roberts et al. 2002). The pure spectra measured on the ground are 
named reference endmembers and need to be well calibrated to the image 
data. The second approach uses image endmembers obtained directly from 
the images (Small 2004). This approach does not require spatial and radiomet­
ric calibration between endmembers and image data since their acquisition 
is from the same sensor and scale. SMA automation is also required to make 
this technique useful for monitoring large areas. A Monte Carlo unmixing 
technique using reference endmember bundles was proposed for that pur­
pose (Bateson et al. 2000) and applied to map selective logging with Landsat 
images over the Brazilian Amazon (Asner et al. 2004a, 2005). An alternative 
approach using generic image endmembers (Small 2004) was implemented 
for the same application (Souza et al. 2005b), avoiding the need for collecting 
reference field spectra. 

A novel spectral index applicable combines SMA fractions to derive the 
normalized difference fraction index (NDFI) (Souza et al. 2005b). The NDFI 
was developed to more accurately map selective logging. The NDFI is com­
puted as: 

NDFI values range from –1 to +1. For intact forests, NDFI values are expected 
to be high (i.e., about 1) due to the combination of high GVshade (i.e., high 
GV and canopy shade) and low NPV and soil values. As forest becomes 
degraded, the NPV and soil fractions are expected to increase, lowering 
NDFI values relative to intact forest. Cleared forests are expected to exhibit 
low GV and shade, and high NPV and soil, making it possible to distinguish 
them from degraded forests as well (Figure 10.4). 

Fraction images obtained with the subpixel estimation of forest endmem­
bers through SMA enhanced the detection of forest degradation caused by 
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FIGURE 10.4 
(See color insert.) Subset of a Landsat TM image showing fractions obtained from SMA and 

NDFI. (a) High soil fraction shows logging infrastructure (log landings and roads); (b) NPV 

shows higher fraction values for canopy-damaged areas along infrastructure relative to the 

surrounding intact forest; (c) canopy damage is also identified with lower GV fraction values 

(dark colors); and (d) all the fraction information are combined to enhance the detection of 

logged forest. 

logging. As a result, spatial and contextual classifiers were developed and 
applied to fraction images improving detection and mapping of selectively 
logged forests. The techniques varied from simple GV change detection  
(Souza et al. 2002) and contextual–spectral classifiers (Souza et al. 2005b) 
to more sophisticated and computer-intensive spectral and spatial pattern 
recognition techniques (Asner et al. 2005) (Table 10.1). As a result, selective 
logging, initially considered cryptic to Landsat-like images (Nepstad et al. 
1999), became visible and measurable over large forest areas of the Brazilian 
Amazon. Subsequent analyses proved that this type of degradation was 
affecting areas as large as those cleared by deforestation, as indicated by 
field survey estimates (Nepstad et al. 1999). 

10.3.2  Classification of Forest Degradation 

The remote sensing techniques described in Section 10.3.1 represent a con­
siderable contribution toward mapping selective logging, which is one of 
the processes responsible for forest degradation. However, the application of 
these techniques has also revealed challenges in separating logging  damage 
from that created by forest fires. For example, SMA fractions have been 
used to map fire scars of previously logged forests of the eastern Amazon 
(Cochrane and Souza 1998; Cochrane et  al. 1999); the large-area mapping 
studies of selective logging did not take into account the associated fire 
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impacts on forests (Asner et al. 2005; Matricardi et al. 2007), assuming that 
the forest damage was  created only by logging. Therefore, new classifica­
tion algorithms were needed to account for the different change dynamics 
created by logging and fires. 

Morton et al. (2011a) proposed a technique, also applied to SMA fractions, 
to detect the spatial and temporal pattern of forest burn damage and recov­
ery (BDR) in order to distinguish forest degradation from logging and forest 
fires. The BDR technique was applied to Landsat and MODIS data, with the 
latter more suitable for mapping large burn scars (i.e., >50 ha). This technique 
requires robust time series including a postdisturbance recovery  signal, mean­
ing that the result is always 1 year out-of-date. An alternative to this method 
is to use spatial–contextual classifiers to separate logged forest from BFs based 
on the size and shape of the forest damage (Souza et al. 2005b) or the burn scar 
index (BSI) (Alencar et al. 2011), which is an SMA fraction-based approach to 
map BFs. However, these methods do not eliminate all spatial and  temporal 
overlaps between the different degradation processes. Therefore, it is more 
appropriate to map canopy damage without regard to the cause of forest 
degradation (either logging or forest fire), and then use contextual information 
to distinguish the process responsible for the impact. 

For example, Figure 10.5 shows the result of a time-series (1984–2010) anal­
ysis of deforestation and forest degradation for a Landsat TM scene (226/68) 
covering Sinop municipality, in Mato Grosso state, southern Amazon region. 
A decision tree classifier was built and applied to fractions (GV, NPV, soil, and 
shade) and NDFI derived from SMA to map forest canopy damage caused 
by selective logging and forest fires every year. Then, forest degradation age 
and frequency were obtained from these annual maps. Moreover, a carbon 
emission simulator (CES) (Morton et al. 2011a) model was used to estimate 
carbon emissions associated with deforestation and forest degradation and 
associated uncertainty. Forest degradation frequency enables the CES model 
to keep track of carbon stock reduction; forest degradation age is important 
to track carbon sequestration due to forest regeneration. 

Because CES is based on a Monte Carlo simulation approach, emission fac­
tors from deforestation and forest degradation and model parameters are 
defined as ranges of possible values. For example, forest carbon stock changes 
due to forest degradation in this region range from 10% to 30% (Figure 10.3). 
CES runs several times (i.e., at least 100 times), and in each simulation car­
bon stock changes associated with forest degradation can have any possible 
value between this range. Here, we assumed a uniform distribution since 
we do not have sufficient data to define the actual statistical distribution of 
carbon stock changes in degraded forests. Then, uncertainty of carbon emis­
sions associated with deforestation and forest degradation can be estimated 
with CES. 

The CES results showed that the carbon emissions for the 226/62 Landsat 
scene covering the Sinop region in Mato Grosso totaled 46.7–82 MgC 
(i.e.,  tons  of C) from 1984 to 2010 (Figure 10.5). The average total carbon  



a	 b c 

Deforestation and Forest degradation	 Forest degradation
frequencycumulative forest age 

degradation Deforestation Land cover a	 Baseline 1998 Forest 
1985 1999 Degradation 
1986 2000 Cloud 
1987 2001 Water 
1988 2002 
1989 2003 
1990 2004 
1991 2005 
1992 2006 
1993 2007 
1994 2008 
1995 2009 
1996 20100 5 10 km 
1997 

Degradation ageb 27 Years 13 Years 
26 Years 12 Years 
25 Years 11 Years 
24 Years 10 Years 
23 Years 9 Years 
22 Years 8 Years 
21 Years 7 Years 
20 Years 6 Years 
19 Years 5 Years 
18 Years 4 Years 
17 Years 3 Years 
16 Years 2 Years 
15 Years 1 Year 
14 Years0 5 10 km 

Degradation frequency
c 1× 

2× 
3× 
4× 
5× 
6× 
7× 
>8× 

0 5 10 km 

7 × 106 

d 
6
 

Total
 
5	 Direct
 

Decay

Forest degradation
4	 Agriculture fires 

3 

2 

1 

0 
1985 1990 1995 2000 2005 2010 

Ca
rb

on
 em

iss
io

ns
 (M

gC
) 

187 Monitoring of Forest Degradation 

FIGURE 10.5 
(See color insert.) In this example, a long time series (i.e., >25 years) of Landsat TM/ETM+ data 

from Sinop, Mato Grosso state, was used to track deforestation and forest degradation. Forest 

degradation age and frequency maps are obtained from the annual maps and used together 

with the forest degradation and deforestation maps in a CES model to estimate carbon emissions 

associated with these processes. More reliable and consistent baseline scenarios for REDD+ can 

be obtained with this type of model because information about forest degradation is included 

and associated uncertainty estimated. 
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emissions were 66.5 MgC (with 95% CI). Forest degradation contributed 
19% (i.e., 8.7–16.3 MgC; average of 8.7 MgC) of the carbon emissions over 
this 26-year period. However, in 2000, 2007, and 2008, carbon emissions 
from forest degradation were higher than emissions from direct forest 
conversion. These results reinforce the need to measure carbon emissions 
associated with forest degradation (Figure 10.5). 

10.4 Forest Monitoring for REDD+ 
In a recent study conducted in the forests of Mato Grosso state, the sources 
of uncertainties for carbon emission estimates from deforestation, forest deg­
radation, and forest carbon stocks were identified for the period 1990–2008 
(Morton et al. 2011b). The sources of deforestation data showed good agree­
ment for multiyear periods (i.e., 5-year interval), but annual deforestation 
rates differed by >20%. Data sources of forest carbon stocks ranged more sig­
nificantly, between 99 and 192 MgC per hectare. Even though there were sev­
eral ecological studies of the impacts of forest degradation in this region and 
remote sensing techniques for mapping forest degradation were  available, 
existing maps of forest degradation were scarce. Additionally, the available 
forest biomass maps did not account for changes in forest carbon stocks due 
to forest degradation. As a result, full carbon accounting for REDD+ is com­
promised. The remote sensing techniques described in this chapter can be 
used to reduce this uncertainty by quantifying annual transitions involving 
degraded forest and their relation to deforestation and reduction of forest 
carbon stocks (Figures 10.1 and 10.6). 

Selective logging, forest fires, and forest fragmentation are the major 
sources of depletion of forest carbon stocks in the Amazon region through 
forest degradation, even though less carbon-impacting forest degradation 
processes have been recognized (Peres et  al. 2006). Therefore, the lessons 
from the Amazon region regarding characterization of forest degradation 
through ecological and remote sensing measurements can be useful for 
establishing a framework for the spatially explicit estimation of carbon 
emissions and their sources of uncertainty for REDD+ (Figure 10.6). The 
proposed framework is that of the United Nations Framework Convention 
on Climate Change (UNFCCC) Approach 3 and Tier 3 forest area change 
and carbon stocks estimates (Herold et al. 2011). 

First, the baseline period for the project must be defined. In our study in 
Mato Grosso, we concluded that a long (>15 years) historic assessment could 
help reduce uncertainty in remote sensing data sources. In the example pro­
vided in Figure 10.5, 1984 was defined as the baseline year for mapping for­
est changes. For mapping deforestation, there are several well-established 
remote sensing techniques and operational monitoring systems in place in 
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FIGURE 10.6 
(See color insert.) Integrating deforestation and forest degradation information to estimate 

forest carbon stock changes for REDD+ projects. 

the Amazon region. For forest degradation, Table 10.1 offers several options 
to map forest canopy-damaged areas. The reported map accuracy for the 
methods used to map logging and forest fires ranged from 89% to 93%. 
However, it is important to previously characterize the processes respon­
sible for degradation in order to support the selection of the remote sensing 
method. 

Deforestation maps over the REDD+ baseline period allow estimation 
of annual deforestation rates. Additionally, deforestation maps can also 
inform the length of forest edges and the extent of forest fragmentation. 
For example, in 1999 and 2002, more than 32,000 km and 38,000 km of new 
forest edges were created, respectively, as a result of deforestation and 
selective logging (Broadbent et al. 2008). Information on forest fragmenta­
tion and edge effects has not been taken into account in REDD+ projects, 
but can be a major source of carbon emissions (Numata et al. 2010, 2011). 
Forest degradation maps are important for providing information on 
annual rates of degradation and on forest degradation age and recurrence 
(i.e., frequency). Age and recurrence histories of forest degradation are 
necessary for updating forest carbon stock maps. Moreover, this informa­
tion can aid in designing forest inventory sampling stratification schemes 
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to estimate carbon stocks of degraded forests at field level. For example, 
forest inventories can be conducted in areas that have undergone several 
cycles of carbon depletion by degradation processes. 

Annual maps of forest degradation derived from remote sensing offer a 
reliable spatiotemporal data set to account for forest carbon stock changes in 
preparing a REDD+ baseline. Once forest inventories are conducted, spatial 
interpolation methods can be used to derive forest biomass information over 
large areas. Kriging interpolation is an approach that has been successfully 
tested in the Brazilian Amazon to estimate spatially explicit unbiased aver­
ages of forest biomass and their associated uncertainty (Sales et  al. 2007).  
Integration of krigged forest biomass maps with maps of deforestation and 
forest degradation has already been conducted and proven to be useful in 
reporting carbon emissions associated with these processes (Morton et al. 
2011a; Numata et al. 2011). 

These results are promising and support the proposed framework 
(Figure 10.6) for monitoring REDD+ projects. The challenges to applying 
this framework to other tropical forest regions include the lack of technical 
capacity for both remote sensing and forest inventory activities. However, 
options for monitoring forest degradation and deforestation going from 
a less to more rigorous approach/tier are available (Herold et  al. 2011). 
Nonetheless, there is no technical reason to exclude carbon emissions 
estimates by forest degradation from REDD+ MRV activities. 

10.5 Conclusions 

Selective logging, forest fires, and forest fragmentation are the main pro­
cesses responsible for forest degradation in the Brazilian Amazon. These 
processes can lead to significant reduction of forest carbon stocks, especially 
when recurrent forest degradation occurs. Additionally, significant change in 
forest structure also happens, allowing detection and mapping of forest deg­
radation scars with optical remotely sensed data. A range of 1–30 m of spatial 
resolution imagery has been tested in the Amazon region for mapping forest 
degradation, using different techniques. But high spatial resolution imagery 
such as Landsat has been the most important source of data to map forest 
degradation in this region. Landsat imagery is important because it covers 
very large areas and allows to construct very long (i.e., >15 years) historical 
deforestation and forest degradation credible baseline for REDD+. In terms 
of techniques, subpixel information derived from SMA offers a better way to 
enhance forest degradation scars relative to whole-pixel classifiers or textural 
metrics (which is based on pixel neighborhood information). Moreover, forest 
change detection algorithms must be designed to track history and recurrent 
events of forest degradation to better estimate carbon emissions associated 
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with these processes. Therefore, because of the large area affected and high 
impact on forest carbon stocks, baseline for REDD+ projects in the Amazon 
region must include annual forest area change and associated carbon emis­
sions due to forest degradation, as demonstrated in this chapter. 
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11.1 Introduction 

Forest resources are very relevant in the political agenda of the European 
Union, as forestry influences many sectorial policies dealing with environ­
mental protection, renewable energy, and biodiversity, to name some. The 
design, implementation, monitoring and evaluation, and impact assessment 
of environmental policies at the European level require reliable, consistent, 
and updated information of forest resources. 

Although several countries in Europe collect a considerable amount of 
forest-related information, this is often not spatially continuous and fre­
quently not accessible, nonharmonized, scattered in remote databases, 
and encapsulated in diverse data formats. One critical aspect regarding 
forest information in Europe is the different forest definitions used by 
countries, which hampers the comparability of nationally collected forest 
information. 

Remote sensing–based products are thus the most suitable source of con­
sistent and up-to-date forest information over large areas. Remote sensing 
techniques have been widely used for mapping forest resources at local and 
national levels. Working over large areas poses additional logistic, techni­
cal, and managerial challenges that have limited the number of existing 
pan-European products. Large-area projects usually require a considerable 
data management capacity. They also require carefully planned processing 
chains, including consistent preprocessing of satellite and ancillary informa­
tion and mapping methodologies to produce large-area products. In addi­
tion, these methodologies must be robust, reliable, and flexible to handle 
suboptimal data sets of images from several sensors. 

Several remote sensing–based products exist that include forest infor­
mation and have pan-European coverage. However, these products were 
derived from coarse-resolution satellite images (Bartholomé and Belward 
2005; DeFries et al. 2000; Friedl et al. 2002; Häme 2001; Hansen et al. 2000; 
Schuck 2003) or are labor intensive (Corine Land Cover [CLC]). Furthermore, 
the lack of comprehensive validation schemes of these products limits their 
utility in a number of applications. 

The recent availability of a wider selection of remote sensing data allows 
an improvement in spatial resolution over the existing products. It also 
allows exploiting the temporal domain of remote sensing data. This scenario 
enables the development of products with higher spatial detail and increased 
thematic information content. 

In this context, the Joint Research Centre (JRC) of the European Commission 
has been working on the production of enhanced remote  sensing–based  
forest products. Two pan-European forest maps with a ground sampling 
distance (GSD) of 25  m have been produced based on Landsat ETM+ 
imagery (Pekkarinen et al. 2009) and IRS LISS-III, SPOT 4-5, and Moderate 
Resolution Imaging Spectro radiometer (MODIS) remote sensing data 
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(Kempeneers et al. 2011). Besides these high-resolution  products, the JRC 
is carrying out research to improve forest  monitoring capabilities at 250  
and 500 m GSD based on time-series  analysis of remote sensing data. This 
chapter presents the methodologies used in the  production of these maps 
and their accuracies and discusses future  potential developments in forest 
monitoring at the pan-European level. 

11.2  Materials and Methods 

This section describes the materials used in the production of the forest 
maps for the years 2000 and 2006 (Figures 11.1 and 11.2). 
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FIGURE 11.1 
(See color insert.) JRC forest map 2000. 
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FIGURE 11.2 
(See color insert.) JRC forest map 2006. 

11.2.1 Materials 

The forest/nonforest map for the year 2000 (FMAP2000) was derived from 
Landsat-7 ETM+ imagery. Scenes belonged to two different image datasets: 
the NASA Orthorectified Landsat Dataset (Tucker et al. 2004) available from 
the Global Land Cover Facility (GLCF) and the IMAGE2000 data set (JRC 
2005). The two data sources were mixed in order to optimize cloud freeness 
and acquisition date. The target year for the scenes was 2000, but the acqui­
sition window covered years from 1999 to 2002. The full data set included 
415 scenes available as top of atmosphere (TOA) radiance: 285 of them from 
the GLCF and 130 from the IMAGE2000 data set. All images in the full 
data set were reprojected to the European Terrestrial Reference system 1989 
and the Lambert Azimuthal Equal Area (ETRS89-LAEA) projection and 
resampled to 25 m rasters. In order to ensure consistent  geometrical quality 
between scenes coming from the two different data sets, IMAGE2000 scenes 
were orthorectified taking GLCF scenes as a reference. 

The forest/nonforest map for the year 2006 (FMAP2006) and the  forest 
type map (FTYP2006) were derived from the IMAGE2006 data set. This data 
set includes TOA radiance IRS-LISS-3 scenes and additional SPOT 4 and 
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5 scenes for those regions in which cloud-free IRS-LISS-3 were not available. 
The scenes were orthorectified and geometrically corrected. As in the year 
2000, all images were reprojected to ETRS89-LAEA projection and resam­
pled to 25 m rasters. 

In addition to the IMAGE2006 data set, the production of FTYP2006 
required 12 (one per month) MODIS 16-day composites at 250 m spatial 
resolution. These composites were reprojected and resampled to 25 m to 
match the IMAGE 2006 data set. 

11.2.2 Ancillary Data 

11.2.2.1 Training Data 

The CLC data set was used as training data. CLC includes 44 land cover (LC) 
and land use classes from which three correspond to forest classes  (broad leaved, 
coniferous, and mixed forests). The CLC covers all EIONET countries, which 
includes the EU-27 Member States and neighboring countries. The CLC is 
available for the reference years 1990, 2000, and 2006. The corresponding  data 
set was used for the production of each pan- European forest map. 

11.2.2.2 Reference Data 

The validation of the FMAP2000 was performed using two data sets. The first 
included field plot data from the land use/cover area frame statistical survey 
that was carried out in 2001 (LUCAS2001). LUCAS2001 is based on 94,984 
sampling units, which consist of a circle with a 20 m radius. It is based on a 
seven LC classification nomenclature, with the forest class subdivided into 
broadleaved, coniferous, and mixed, but it also includes a land use component. 
The second data set was derived from the visual interpretation of sample points 
overlaid on very high-resolution satellite imagery from Google Earth. In total, 
5,193 forest and nonforest points were collected from the interpretation of this 
data set and classified into forest and nonforest classes. 

The FMAP2006 was validated using ground reference data that were 
derived from European National Forest Inventories (NFIs). NFI data are fre­
quently collected by national authorities for the production and planning 
of forest resources at national and regional levels, but they are also needed 
to meet international reporting requirements to the FAO’s Forest Resource 
Assessment (FAO 2010) and other requirements. 

The NFI data used in this validation were managed in the so-called 
eForest platform. The eForest platform, established for the provision of data 
and services to the European Forest Data Center (EFDAC) of the European 
Commission, is the first step to produce a harmonized database of all European 
NFIs. It emerged from the work carried out by the COST Action E-43 that 
sought to develop methods, concepts, and definitions that would harmonize 
NFIs between countries (Tomppo et al. 2010). Of particular importance within 
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FIGURE 11.3 
Pixel extraction tool. 

this process was the harmonization of the definition of forest, which varies 
between NFIs. 

The platform consisted of 1,080,829 NFI plots, distributed across 21 coun­
tries. However, the exact plot locations were not disclosed by the NFIs. For the 
validation, it was necessary to build a pixel extraction tool that was used by 
the data owners to extract the forest map data within a 5 × 5 window around 
the NFI plot coordinates (Figure 11.3). These data were used to  compute 
the overall, producer, and user accuracies for the FMAP2006 at country and 
regional scales. Plots that were labeled as young stands or unstocked were 
removed from the eForest validation data set so that the accuracy assess­
ment of the FMAP2006 focused on forest cover and nonforest use. It should 
be noted that unstocked forest areas are considered forests from a land use 
perspective, although they are not forests from an LC (remote  sensing) 
perspective. 

Additionally, the LUCAS2001 data were used to validate the FMAP2006 
data set. The results of this validation process are described hereafter. 

11.3 Methods 

11.3.1 Data Preprocessing 

The high spatial resolution scenes from IRS LISS-3 and SPOT4/5 were 
preprocessed by the German Aerospace Center (DLR). The scenes were 
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orthorectified using rational polynomial functions (Lehner et  al. 2005) 
and geometrically corrected using ground control points (GCPs) and a 
digital elevation model (DEM). The orthoimages were resampled to 25 m 
in the standard projection for Europe, using the ETRS89/LAEA projection 
(Annoni et al. 2003). The reported root mean square errors in both horizon­
tal directions were less than a pixel. The images were only available as TOA 
radiances (not atmospherically corrected). 

In the case of the MODIS, daily images were also preprocessed by DLR in 
the standard European projection. However, a geometric and atmospheric 
correction was performed to obtain ground reflectances for bands 1–7 at 
250 and 500 m GSD. 

A 16-day MODIS composite was created from the daily images. By not 
using the MOD13Q1 product (Huete 2002), a reprojection from sinusoidal to 
the standard European projection was not needed, avoiding an extra inter­
polation step. Unlike the MOD13Q1 product, our 16-day composite was not 
corrected for BRDF effects. Nevertheless, by selecting the median pixel value 
in the NIR band of all cloud-free observations within the 16-day window, 
some of the effects due to undetected clouds and extreme observation angles 
were alleviated. 

11.3.2  Forest Mapping Approaches 

A nonparametric supervised classification algorithm was used to obtain the 
forest maps FMAP2000 and FTYP2006. Supervised classification methods are 
preferable in cases where a priori information is available for the desired out­
put classes and their spatial distribution (Cihlar 2000). With the CLC map, 
training data for forests (types) and nonforests were available in a consistent 
way for the entire area of interest (Europe). 

Given the large geographic extent of the pan-European map, the interclass 
variance was expected to be high. For example, broadleaved forests in northern 
Europe have different spectral characteristics than those in southern Europe. 
Moreover, the digital numbers stored in the multispectral image bands rep­
resented TOA radiance and thus were not corrected for atmospheric effects. 
Consequently, image data were processed on a  scene-by-scene basis, allowing 
the classifier to be trained for the specific conditions within each scene. The 
final output, the pan-European forest map, was then obtained by mosaicing 
the different scenes, using a composite rule where pixels did overlap. In the 
case of the FMAP2000, the composite rule was based on uncertainty informa­
tion derived during the classification process. The number of overlapping 
scenes in the case of the FMAP2006 was larger (every pixel was observed 
at least twice but often three to four times). This allowed for a (weighted) 
maximum voting of the classified scenes. Weights were introduced based on 
seasonality. Summer scenes were weighted in favor of early spring or late 
autumn scenes. 
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The main requirements for the classification method were: 

1. Consistency: The wall-to-wall pan-European forest map had to be 
produced in a homogeneous way. 

2. Performance: Algorithms had to be fully automatic. 

3. Robustness	 for deficiencies in the training and input data: The 
methods for the FMAP2000 and FTYP2006 showed some impor­
tant differences in how this was achieved. This is explained in the 
 following overview. 

The FMAP2000 was mapped using a k-nearest-neighbor (k-NN) classifier 
(Tomppo et  al. 2008). Instead of extracting spectral information for each 
Corine Land Use Land Cover patch, two key improvements in the classifica­
tion approach were implemented to improve the performance (Pekkarinen 
et al. 2009): first, a segmentation prior to the classification step and second, 
an adaptive spectral representivity analysis (ASRA) (Pekkarinen et al. 2009). 
ASRA was developed to improve the training process and to minimize errors 
resulting from the relatively large minimum mapping unit of Corine. The 
segmentation was merely used to speed up the k-NN classification, which is 
known to be inefficient for processing large data sets. The ASRA was intro­
duced after clustering the segments into spectral classes. It seeks to identify 
representative combinations of spectral and informational classes using a 
contingency table, derived from the cluster labels and CLC classes. For more 
details of the algorithm, the reader is referred to Pekkarinen et al. (2009). 

The classification method for the FTYP2006 was based on an artificial neu­
ral network (ANN) (Rumelhart and McClelland 1986) that has been shown 
to combine two excellent classification properties: high accuracy (Chini 
et al. 2008; Licciardi et al. 2009) and robustness to training site heterogeneity 
(Paola and Schowengerdt 1995). Also important for the selection of the clas­
sifier was that the ANN, once trained, is very fast. Unlike for the production 
of the FMAP2000 method, a segmentation step was therefore not needed. 

Another difference with the FMAP2000 is that forest types were introduced 
in the FTYP2006. To increase the potential of the classifier, multitemporal 
information was added to the multispectral information (data fusion). The 
multitemporal data were obtained from the MODIS sensor, using a 16-day 
composite for each month in 2006 at 250 m spatial resolution. The temporal 
aspect of the spectral reflectance can describe phenology, which is a poten­
tial indicator for LC types (DeFries et al. 1994; Hansen et al. 2005). The data 
fusion with this additional information source also increased the robustness 
of the classification process (Kempeneers et al. 2011). 

However, fusing data from sensors at different spatial resolutions posed 
a challenge to retain the fine spatial resolution in the final LC map. A new 
data fusion method was therefore proposed, based on a two-step approach 
(Kempeneers et  al. 2011). In step one, the classifier created a forest map, 
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classifying forests and nonforests only. In step two, a new classifier refined 
forest into forest types, excluding the nonforested pixels from the classifi­
cation process. The multitemporal data at medium spatial resolution were 
introduced only in step two. 

The idea is that, as the classes are refined, the complexity of the classifica­
tion increases. At this point, the classifier can benefit most from the added 
information obtained from data fusion. The forest/nonforest map was 
mapped using only the spectral information at fine spatial resolution and 
therefore retained the finest spatial resolution possible. 

11.4 Results 

The accuracy assessment of the forest cover maps was performed using three 
reference data sets that were previously described in Section 11.2.2. The over­
all accuracy (OA) of the FMAP2000 was 88.6% and 90.8% respectively for the 
VISVAL and LUCAS data sets, while the OA for the FMAP2006 was 88.0% 
and 84.0% based on the eForest and the LUCAS2001 data sets. The results for 
eForest and LUCAS2001 cannot really be compared due to a different cover­
age in both space and time (where LUCAS2001 can be regarded as outdated). 

The calculation of the producer and user accuracies provided information 
on the performance of both maps for the forest and nonforest classes 
(Table 11.1). The producer’s accuracy of the forest class was lowest for the 
FMAP2006 (75%) with respect to the eForest database, while it was slightly 
higher than FMAP2000 at 85.5% and 83.9% when compared to the VISVAL 
and LUCAS data sets. When compared to official statistics, the results dem­
onstrated an overall underestimation of forest area in both forest maps, 
which was particularly emphasized in Ireland, Spain, Portugal, and Greece. 
This underestimation can be explained by the high rate of recent afforesta­
tion in Ireland, while in the Mediterranean countries, the forests typically 
have a very low percentage forest cover (e.g., 5% in Spain). 

TABLE 11.1 

FMAP2000 and FMAP2006 Accuracies with Respect to Validation Data Sets 

FMAP2000 FMAP2006 

Accuracies VISVAL LUCAS eForest LUCAS2001 

OA% 88.6 90.8 88.0 84 

Forest PA% 85.5 83.9 75 66 

Forest UA% 77.66 85.8 87 85 

Nonforest PA% 89.58 NA 94 94 

Nonforest UA% 93.59 NA 88 84 
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The individual accuracies for the forest and nonforest classes were 
computed for the 3 × 3 window, and it was found that the producer accura­
cies improved by 1% for the eForest database (from 75% to 76%) and by 3% for 
the LUCAS data set (from 66% to 69%). 

11.5 Applications 

Harmonized spatial information on forest area is an important basis for 
environmental modeling and policy making at both national and interna­
tional levels. Even if a majority of these data have been supplied by NFI statis­
tics, detailed spatial distribution needed for modeling or further  applications 
can mainly be provided by remote sensing–based products. Yet, reliability, 
consistency, and a high level of harmonization are important aspects to 
ensure comparability and enable the development of forest scenarios at an 
international level. The pan-European forest cover maps (FMAP2000 and 
FMAP2006) have the advantage to be produced under these prerequisites 
due to their harmonized approaches and, therefore, guarantee spatial con­
sistency for further applications. Besides that, the medium resolution of the 
maps offers higher spatial details as previous pan-European LC products  
such as the CLC maps. 

Most of the applications of the forest cover maps (FMAP2000 and 
FMAP2006) are related to the need for accurate and up-to-date estimates 
on the spatial distribution of forests as inputs into various models. Baritz 
et al. (2010) investigated the carbon concentrations and stocks in forest soils 
of Europe and located forested areas with the help of FMAP2000. Similarly, 
information on forest distribution was needed for a vulnerability study 
in the Alps and the Carpathian mountains (Casalegno et  al. 2011). As the 
forest definition of the forest cover maps includes also urban parks in con­
trast to CLC, FMAP2000 could have been applied in a pan-European urban 
greening study, where growth of urban forest was investigated. In some of 
aforementioned studies, the initial medium resolution (25 m) was degraded 
down to 1 km resolution to speed up the process of the models, yet even 
with the degraded  resolution of 1 km, FMAP2000 was found to be preserv­
ing the detailed forest spatial pattern of the original map (Seebach et  al. 
2011a). Besides applications at the pan-European level, the forest cover maps 
have been used in local or regional studies as the high resolution allows  
for detailed studies at that level. The large extent of Europe further enables 
potential reproducibility of regional studies using these maps as proposed by 
Lasserre et al. (2011) or Casalegno (2011). Another example of the same kind 
is the study of Chirici et al. (2011) that used FMAP2000 for a regional study 
in central Italy (Molise) as an initial forest mask for subsequent delineation 
of clearcuts based on very high-resolution imagery. 
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Another application of these maps apart from their indirect use as forest 
masks is, for example, the estimation of forest area at different units. Seebach 
et al. (2011b) investigated the applicability of FMAP2000 for reporting har­
monized forest estimates for European countries. The comparison with 
official statistics derived from NFIs indicated an overall good agreement 
if uncertainties of both sources were taken into account; yet, discrepancies 
were found in areas with very low and fragmented forests or in mountain­
ous regions. Another major driver of the remaining disagreements between 
official  statistics and map-derived estimates originates from the common 
issue of land use versus LC. While official statistics reports are based on 
forest use definitions, estimates based on remote sensing products like 
FMAP2000/2006 will report land coverage with forest-like vegetation. The 
latter might become forest use maps only if extensive auxiliary data are avail­
able for their manipulation. A further direct application of the forest cover 
maps are their use for assessing change using postclassification comparison 
as both maps have been produced by a comparable and consistent approach. 
This was done for the European part of the FAO FRA 2010 Remote Sensing 
Survey (RSS), where both forest maps were used to detect reliable forest cover 
changes based on an enhanced postclassification approach. This approach 
accounts for potential misregistration errors and reduces the uncertainty of 
erroneous change detection due to classification errors (Seebach et al. 2010). 

All in all, FMAP2000 has proved its ability to serve as a multipurpose 
product from direct use to downstream services. FMAP2006 and the associ­
ated FTYPE2006 have been recently released and are foreseen to be used in 
upcoming studies, where the differentiation of forest types is of high impor­
tance, for example, pan-European forest biomass estimation. Yet, care must 
be exercised for any application of these maps as every map inherits uncer­
tainties, which need to be addressed depending on the intended use. 

11.6  Conclusions and Future Aspects 

The pan-European forest maps have been produced for the reference years 
2000 and 2006 using optical satellite imagery and standardized method­
ologies with respect to preprocessing and classification. These maps have 
provided a baseline assessment of the spatial distribution and composition 
of forest resources in Europe and demonstrated improvements in terms of 
quality and production with respect to the CLC Project. In the frame of the 
Global Monitoring for Environment and Security (GMES) Initial Operations, 
the production of a new set of so-called high-resolution layers (HRLs) is 
foreseen, which will be coordinated by the European Environment Agency. 
Among these, HRLs will be a forest layer designed to closely resemble the 
JRC FMAP2000 and FMAP2006, but with a target reference year of 2012. 
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The mapping methods presented within this chapter were based on  at- sensor 
radiances of the remote sensing sensors. Despite the fact that the applied meth­
ods are scientifically sound and practical, future mapping applications should 
be based on well-calibrated image data, from which the effects of the atmo­
sphere have been removed. That would allow for the development of well-
defined algorithms that could be applied to a range of different optical sensors, 
since these algorithms would be based on registered spectral responses of 
real-world objects. Recent advances in preprocessing algorithms and new 
European optical imaging sensors, such as RapidEye and ESA’s Sentinel II, 
will hopefully facilitate future development of such mapping approaches. 

It is evident that the demand for European level information on forest 
resources will increase in the future. We need to better understand the  
integrated role of forests in the protection of the environment, biodiversity, 
well being and recreation, timber and bioenergy production, as well as 
mitigation of climate change and monitoring compliance to international 
climate change agreements. In the future, other sources of Earth  observation 
data should be further studied and used in large-scale mapping projects. For 
instance,  interferometric SAR and space-borne LiDAR could be used to map 
land use and LC as well as being used to estimate other forest parameters, 
particularly by their combined use with field measurements and/or 
high-density airborne LiDAR data. 
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FIGURE 4.1 
Active Landsat ground stations. (More details are available at http://landsat.usgs.gov/about_ 

ground_stations.php.) 
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FIGURE 6.2 
400 km × 400 km subset centered on 12° 4’ S, 55° 59’ W in Mato Grosso, Brazil. False-color 

composite of MODIS band 7 growing season metrics—blue: 2000 mean band 7 shortwave 

infrared reflectance from the three greenest 16-day composite periods, green: difference in the 

2000 and 2005 mean band 7 shortwave infrared reflectance from the three greenest 16-day 

composite periods, and red: difference in the 2005 and 2010 mean band 7 shortwave infrared 

reflectance from the three greenest 16-day composite periods. 

FIGURE 6.3 
400 km × 400 km subset centered on 51° 45’ N, 72° 8’ W in Quebec, Canada. False-color 

composite of MODIS band 7 growing season metrics—blue: 2000 mean band 7 shortwave 

infrared reflectance from the three greenest 16-day composite periods, green: difference in the 

2000 and 2005 mean band 7 shortwave infrared reflectance from the three greenest 16-day 

composite periods, and red: difference in the 2005 and 2010 mean band 7 shortwave infrared 

reflectance from the three greenest 16-day composite periods. 
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FIGURE 7.1 
Example of time series (for years 1990, 2000, and 2005) of Landsat satellite imagery over one 

sample site in the Amazon Basin (20 km × 20 km size). Forests appear in dark green, deforested 

areas (agriculture and pastures) appear in light green or pink. 



  

 

FIGURE 7.2 
Visualization tool used for the process of verification and correction of  multitemporal 

 classifications. Left column: Segmented Landsat imagery displayed (top: year 1990, bottom: year 

2000). Right column: Land cover maps produced from satellite imagery. 

FIGURE 7.3 
The 20 km × 20 km multi-spectral Landsat image (left) for a sample site in the boreal forest 

showing, for the central 10 km  × 10 km portion (red box), the classification of land cover  (center) 

and land use (right). Land cover is classified as TC (green), tree cover mosaic (light green), 

OWL (orange), and other land cover (yellow). Land use is classified as forest (green), OWL 

(orange), and other land use (yellow). 
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FIGURE 8.2 
Forest cover loss monitoring in European Russia. (a)  The ca. 2000 region-wide Landsat 

ETM+ image composite. (b–d) Zoom-in example of forest cover and change mapping in 

the Republic  of Karelia: b—the ca. year 2000 image composite; c—the ca. year 2005 image 

 composite; d— classification result. 
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FIGURE 8.4 
Forest cover loss monitoring in the DRC. (a) Nation-wide forest cover and change mapping 

result. (b–c) Zoom-in example of forest cover and change mapping around Buta: b—ca. year 

2010 image composite; c—classification result. 
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FIGURE 9.1 
The BLA (red) located in the South American continent. 
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FIGURE 9.5 
Illustration of the example of DETER project results, showing the deforested areas detected 

during the year 2004. 

FIGURE 10.1 
Forest degradation processes and interactions commonly found in the Brazilian Amazon. 

Pristine forests can be subject to selective logging, creating favorable conditions for burning 

when fires from adjacent agriculture fields unintentionally escape. Logging and fires can be 

recurrent, creating highly degraded forests. Eventually, degraded forests can be converted by 

deforestation, increasing forest edges and landscape fragmentation. If degraded forests are not 

cleared, vegetation regeneration processes can  prevail given the high resiliency of forests. 
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FIGURE 10.2 
Very high spatial resolution false-color infrared IKONOS image showing the different 

environments commonly found in logged and burned (LB) forests in the eastern Brazilian 

Amazon. At 1 m spatial resolution, log landings, logging roads, tree fall canopy gaps, and  forest 

edges can be identified as well as “islands” of UFs and signs of regeneration. Signs of forest 

erosion along the edges between the LB forest and the recently slashed-and-burned forest can 

also be observed. (From Souza, C.M. and Roberts, D., Int. J. Remote Sens., 26, 425, 2005.) 

FIGURE 10.4 
Subset of a Landsat TM image showing fractions obtained from SMA and NDFI. (a) High soil 

fraction shows logging infrastructure (log landings and roads); (b) NPV shows higher fraction 

values for canopy-damaged areas along infrastructure relative to the surrounding intact forest; 

(c) canopy damage is also identified with lower GV fraction values (dark colors); and (d) all the 

fraction information are combined to enhance the detection of logged forest. 
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FIGURE 10.5 
In this example, a long time series (i.e., >25 years) of Landsat TM/ETM+ data from Sinop, Mato 

Grosso state, was used to track deforestation and forest degradation. Forest degradation age and 

frequency maps are obtained from the annual maps and used together with the forest degradation 

and deforestation maps in a CES model to estimate carbon emissions associated with these processes. 

More reliable and consistent baseline scenarios for REDD+ can be obtained with this type of model 

because information about forest degradation is included and associated uncertainty estimated. 
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FIGURE 10.6 
Integrating deforestation and forest degradation information to estimate forest carbon stock 

changes for REDD+ projects. 
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FIGURE 11.1 
JRC forest map 2000. 
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FIGURE 11.2 
JRC forest map 2006. 

FIGURE 12.2 
Examples of NAFD disturbance mapping from southern Oregon (Landsat path 46, row 30).  

Top row: RGB imagery (bands 7, 5, 3) and VCT disturbance maps for an area of active harvest; 

bottom row: RGB imagery and disturbance map for the northern edge of the 2002 Biscuit Fire. 

The VCT maps shows permanent forest (green), permanent nonforest (gray), and the year of 

mapped disturbance from 1985 to 2009 (other colors). 
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FIGURE 12.3 
Comparison of disturbance rates among satellite-based and inventory-based studies. LEDAPS 

(Masek et al. 2008) and NAFD (Kennedy et al. in preparation) are based on Landsat change 

detection. NAFD (adj) reflects compensation for net omission errors based on visual validation. 

MODIS GFCL is based on MODIS gross forest cover loss (GFCL) (Hansen et al. 2010). The FIA 

(age < 20) is based on equating the area of young forestland from the FIA with an annualized 

turnover rate. The percent forest cover values are based on the area of forest land in the “lower 

48” conterminous United States (~250 Mha). 
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FIGURE 13.1 
Image calibration (top) and normalization (bottom). Calibration: Landsat mosaic of Australia 

showing (a) uncalibrated, (b) TOA correction, and (c) TOA + BRDF correction. Normalization 

(From Wu et. al., 2004.): (d) uncorrected, (e) terrain illumination correction, and (f) estimated 

occlusion mask overlaid and shown in gray. (From Wu, X., et al., An approach for terrain 

illumination correction. Australasian Remote Sensing and Photogrammetry Conference, 

Fremantle, Western Australia, 2004.) 



  

 

   

 

FIGURE 13.3 
(Left) Graphical depiction of the location of high-resolution IKONOS data used in the deriva­

tion of classifier training information. (Right) Typically, samples are required by intersection 

of zone and image, though well-calibrated data can reduce this requirement by allowing 

extrapolation across scene boundaries in many cases. 

FIGURE 13.5 
Map of Australia showing NCAS forest extent (green) and sparse extent (red). 

FIGURE 14.8 
Example of burned area polygons derived from the three methods: red  polygon, AFBA product; 

black polygon, SRBA product; yellow polygon, HRBA product. The results are displayed in 

the Web-service user interface with the Landsat-TM scene used for the HRBA product as a 

 background image. 
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PALSAR 10 m global mosaic 2009 ALOS 

©JAXA, METI Analyzed by JAXA 

R:HH G:HV B:HH/HV 

FIGURE 15.1 
Global ALOS PALSAR color composite mosaic at 10 m pixel spacing (R: HH, G: HV, B: HH/ 

HV). 95% of the data—a total of approximately 70,000 scenes—were acquired within the time 

period June–October 2009. (Courtesy of JAXA EORC, Tsukuba, Japan.) 

FIGURE 15.2 
(d) A composite of HH data from two dates (September 12 and 15, 2011) and coherence (in RGB 

respectively; blue areas indicate deforested areas). 
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FIGURE 15.4 
Satellite image mosaics produced for the Xingu River headwaters region. (a) ALOS PALSAR 

mosaic consisting of 116 individual Level 1.1 (single-look complex) fine beam,  dual-polarimetric 

scenes (R/G/B = polarizations HH/HV/HH-HV difference). (b) Map of  forest (green) and 

nonforest (beige) generated with an overall classification accuracy of 92.4% ± 1.8%. (c) Landsat 

5 mosaic consisting of 12 individual Level 1G (Geocover) scenes (R/G/B = bands 5/4/3). 



 

 

 

FIGURE 15.5 
Multitemporal ALOS PALSAR L-band HV image generated from data acquired in 2007 

(red), 2008 (green), and 2009 (blue) for a part of the Xingu watershed. Closed forest (white) is 

interspersed with fire scars (red tones) along the main stem of the Xingu River and tributaries 

(black). 
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FIGURE 15.6 
Forest degradation in Sarawak through selective logging observed through comparison of 

forest maps generated using ALOS PALSAR data for the years (a–c) 2007 through to 2009. 
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CONTENTS 

12.1	  Introduction: U.S. Forest Dynamics in the Global Context 

Forest dynamics in the United States differ substantially from those in the 
developing world and thus present unique monitoring requirements. While 
deforestation and conversion to semipermanent agriculture dominate 
tropical forest dynamics, the area of forest land in the United States has  
remained fairly constant for the last 50–60 years (Birdsey and Lewis 2003). 
Although the United States experienced rapid deforestation during the 
eighteenth and nineteenth centuries, much of the eastern clearing regrew 
during the twentieth century as marginal agricultural land was abandoned. 
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212 Global Forest Monitoring from Earth Observation 

Recent inventory reports indicate very small rates of net forest cover change 
in recent decades, with the area of U.S. forests increasing by slightly more 
than one-tenth of 1% per year since 1987 (Smith et al. 2009). 

Rather than land use conversion, forest dynamics in the United 
States are dominated by harvest, fire, and other temporary disturbance 
processes. These processes do not change the net area of forest land use, 
but dramatically affect the forest age structure, landscape ecology, carbon 
balance, and habitat suitability. It is thought that about 1.4% of forest land 
area is affected by harvest each year in the United States, and another 
0.4% is affected by fire (Smith et al. 2009; U.S. EPA 2011). However, these 
disturbance rates are not static. Changes in forest management as well as 
recent climate change may be affecting contemporary disturbance rates 
relative to historic norms (e.g., van Mantgem et al. 2009). 

The United States relies on its national forest inventory for domestic and 
international reporting of forest change. The U.S. Forest Inventory and Analysis 
(FIA) program collects data on a set of over 300,000 plots across the United 
States, with one plot per every ~2,430 ha. A range of attributes are collected 
in addition to stand volume, including stand age, species composition, and 
management practice. The key aspect of this design-based inventory is that the 
sampling error associated with any variable is well constrained, and thus robust 
estimates across broad areas can be made with known sampling uncertainty. 
Plots are remeasured on a 5- to 10-year cycle, depending on the state. Like 
other nations, the United States reports national forest carbon dynamics as part 
of the United Nations Framework Convention on Climate Change (UNFCCC). 
In this case, inventory data from the FIA and other agencies are collated and 
reported by the U.S. Environmental Protection Agency (EPA). 

While the FIA is well suited for estimating national forest statistics, it is 
not designed to accurately capture local dynamics due to disturbance and 
other rare events. For example, while a difference between a 1% per year and 
2% per year disturbance rate is truly significant from an ecological point of 
view, a very large number of random samples is needed to distinguish those 
two rates with any level of precision. Given the FIA plot spacing, this implies 
that disturbance rates cannot be accurately characterized below the scale of 
100s of kilometers. 

The desire for consistent, geospatial information on forest disturbance 
and conversion has invigorated the application of Landsat-type remote 
sensing technology for forest monitoring in the United States. This work 
builds on a significant legacy that dates back to the launch of Landsat-1 in 
1972 (Cohen and Goward 2004). Early efforts at basic land cover mapping 
identified forests as a unique spectral region (the so-called badge of trees 
in red-near-IR space) that enabled reliable single-image mapping of forest 
cover. Studies during the 1980s and 1990s established the opportunity to 
use multidate Landsat imagery to characterize forest conversion, harvest, 
burned area, and insect damage. Recent increases in computing power, cou­
pled with the gradual opening of the Landsat archive for free distribution, 
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have resulted in researchers undertaking increasingly ambitious programs 
in large-area forest dynamics monitoring. Here we describe several of these 
efforts, focusing on national-scale work in the United States. 

12.2  Overall Forest Disturbance: LEDAPS and NAFD Projects 

The North American Carbon Program (NACP) is an ongoing interagency 
effort within the United States to constrain the North American carbon 
budget, improve process understanding, and forecast future scenarios. The 
NACP Science Strategy recognized at the outset that ecosystem disturbance 
was a critical but poorly known parameter required for more accurate assess­
ments of ecosystem carbon flux. Accordingly, two Landsat-based projects 
were organized during 2004–2005 in order to meet NACP modeling needs 
(Goward et al. 2008). 

The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing 
System) project was based on traditional two-date change detection, but 
across very broad spatial scales (Masek et al. 2008). The main objective was to 
map stand-clearing disturbance (primarily fire and clearcut harvest) across 
all forested land in the conterminous United States and Canada. At the start 
of the project, the Landsat archive was not yet free. Instead, the  project chose 
to use the Global Land Survey (GLS) preprocessed Landsat data sets (Tucker 
et  al. 2004). The GLS data sets consist of cloud-free imagery for epochs 
centered on 1975, 1990, 2000, 2005, and 2010. For the LEDAPS project, the 
focus was on estimating forest disturbance between 1990 and 2000. 

The LEDAPS processing approach focused on establishing accurate 
surface reflectance values from each image, and then using those data to 
perform two-date change detection using a tasseled cap disturbance index. 
Considerable work went into establishing a sensor calibration and atmo­
spheric correction approach suitable for use with the GLS data sets, includ­
ing revising the Landsat-5 calibration look-up table based on invariant desert 
targets and adjusting the calibration of the older GLS data sets to reflect the 
new table. The development of a stand-alone atmospheric correction code for 
Landsat was a significant side benefit of the project. 

Beyond sensor calibration, a number of other challenges were  
encountered during the disturbance mapping. First, the 10-year (1990–2000) 
change-detection span caused stands disturbed during the early part of the 
epoch to exhibit significant regrowth, resulting in high omission errors of 
40%–50%. This issue has previously been documented (Jin and Sader 2005) 
and  suggests that change detection on closer to annual timesteps is more 
appropriate for most forest monitoring applications. Statistical summaries 
reported in Masek et al. (2008) compensated for this issue by adjusting rates 
by the difference between omission and commission errors. Second, many 



 

 

 
 
 

 
 

 

 

 

 
 
 
 

 

 
   

  
 

   
  

 
 
 
 

 

214 Global Forest Monitoring from Earth Observation 

of the GLS images from the 1990 and 2000 data sets were acquired  during 
senescent parts of the growing season, confusing the change-detection 
approach. These images were replaced with new imagery purchased from 
U.S. Geological Survey (USGS). 

The results of the continental mapping indicated that 2.3 Mha/year of U.S. 
forest land was affected by stand-clearing disturbance during the 1990s, 
representing a fractional disturbance rate of 0.9% per year, or an equivalent 
“turnover” period of 110 years. The highest disturbance rates were found 
in areas with significant harvest activity, including the southeastern United 
States, Maine/Quebec, and the Pacific Northwest. Rates in the mid-Atlantic 
and New England were lower, reflecting both less overall harvest activity and 
greater prevalence of partial harvest, which could not be reliably detected 
using the LEDAPS measurement period. 

While LEDAPS focused on wall-to-wall assessment of disturbance at a  
coarse temporal timestep, the North American Forest Dynamics (NAFD) 
project took an alternate path: characterizing disturbance using a sparse geo­
graphic sample of Landsat imagery at annual temporal resolution (Goward 
et al. 2008). The NAFD originally began with a sample of 23 Landsat frames 
across the United States and later expanded to a set of 50 frames. For each 
frame, a set of biennial (later annual) Landsat imagery was assembled, and 
time-series analysis was used to map forest disturbance. 

The NAFD geographic sample was designed to support robust 
characterization of national disturbance rates (eastern and western United 
States as separate estimates) based on an unequal probability sampling 
design. This sampling design was based on selecting across strata for U.S. 
forest types (Ruefenacht et al. 2008) while also accommodating the inclusion 
of fixed sites from earlier phases of the work. The decision to increase the 
number of samples from 23 to 50 reflected the desire to reduce the national 
sampling error to less than 10% (Figure 12.1). 

Aligned with several other recent studies (Kennedy et al. 2007), the NAFD 
disturbance-mapping effort relied on detecting anomalies in per-pixel 
spectral time series. The specific algorithm, the vegetation change tracker 
(VCT; Huang et al. 2010), used a Z-score procedure to normalize each image 
in the time series by dividing by the standard deviation of  reflectance  
values for a set of undisturbed forest pixels. Anomalies were then mapped 
based on significant, long-lasting excursions from the time series (Huang 
et al. 2010). Both the year of disturbance and the spectral magnitude were 
included in the final products (Figure 12.2). It should be noted that the 
annual timestep used in the algorithm allows partial disturbances (such 
as thinning, partial harvest, and mortality from storms and insects) to be 
tracked. 

Overall, the sampling results indicate about 1.1% of forest area disturbed 
each year in the United States during the 1985–2005 period. Although 
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FIGURE 12.1 
Relative error of U.S. national disturbance rate estimates as a function of the number of Landsat 

frames (path/row locations) used in the geographic sample, estimated from initial drafts of 

sample-level disturbance rate for all years from 1985 to 2005. Relative error is the proportional 

difference between the estimated value from the sample and the unknown true value, subject 

to a 90% confidence interval. (Analysis courtesy of Robert Kennedy, Oregon State University, 

Corvallis, OR.) 

disturbance rates in the western United States are dominated by fire and 
insect damage, while rates in the east are dominated by harvest, overall 
disturbance rates were not significantly different between the west and 
east. However, there were significant year-to-year differences. For example, 
disturbance rates in the western United States increased to 1.5% per year 
during the early 2000s as a result of extremely active fire years. There were 
also significant geographic differences in disturbance rate within individ­
ual forest type strata. 

The fact that disturbance rates vary significantly in both space and  
time raises doubts that sampling approaches can adequately character­
ize the disturbance regime at continental scales. The assumption behind 
the NAFD sampling approach was that disturbance rate was fundamen­
tally a function of forest type (or at least that forest type could act as a 
proxy for the controlling factors). This assumption has not been borne out 
by the scene-by-scene results. As a result, the latest phase of the NAFD 
project has abandoned the geographic sampling scheme and switched to 
an ambitious “wall-to-wall” characterization of annual disturbance rate 
for the entire conterminous United States. This effort will require pro­
cessing in excess of 20,000 Landsat images and is taking advantage of 
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1999 2003 

6 km 

VCT disturbance year 

FIGURE 12.2 
(See color insert.) Examples of NAFD disturbance mapping from southern Oregon (Landsat 

path 46, row 30). Top row: RGB imagery (bands 7, 5, 3) and VCT disturbance maps for an area 

of active harvest; bottom row: RGB imagery and disturbance map for the northern edge of the 

2002 Biscuit Fire. The VCT maps shows permanent forest (green), permanent nonforest (gray), 

and the year of mapped disturbance from 1985 to 2009 (other colors). 

the NASA Earth Exchange (NEX) parallel computing environment at the 
NASA Ames Research Center. 

12.3  Operational Fire Monitoring: MTBS and LANDFIRE 

Although wildfire is a primary disturbance agent within the United States, 
the area affected by forest fire has not been well characterized. The National 
Interagency Fire Center (NIFC) maintains a database of major wildfires, but 
does not consistently discriminate between forest fires and other wildfires 
(e.g., brushfire or grassfire). Furthermore, the area recorded is based on an 
external perimeter of each large fire, rather than the actual area affected 
by burning. Two operational projects, Monitoring Trends in Burn Severity 
(MTBS) and LANDFIRE, are using Landsat remote sensing to improve 
burned area and fire risk monitoring. 

A collaboration between the USGS and the U.S. Forest Service (USFS), the 
MTBS project is seeking to supplement the NIFC database with accurate 
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information on U.S. fire area and burn severity (Eidenshink et  al. 2007). 
The primary goal of MTBS is to provide sufficient information to quantify 
interannual variability in U.S. burned area and to understand the extent to 
which forest management and environmental factors may be influencing 
longer term trends in fire. 

MTBS has acquired preburn and postburn (1 year after fire) Landsat imag­
ery for all major wildfires within the United States since 1984, as identified 
from government databases (Eidenshink et al. 2007). Fires larger than 1,000 
acres in the western United States and larger than 500 acres in the east­
ern United States are considered in the project. The normalized burn ratio 
(NBR) spectral index is calculated for the image pair bracketing a major 
fire, and a difference (dNBR) image is generated by subtracting the pre-
and postfire NBR values. The NBR metric takes advantage of the fact that 
recent fires leave considerable char, ash, and mineral soil, which tend to be 
relatively bright in the shortwave infrared compared to the near-infrared. 
While the NBR metric has been questioned as a suitable proxy for overall 
fire severity in Boreal ecosystems (Hoy et al. 2008), it has also been shown to 
be highly correlated with canopy damage (Hoy et al. 2008) and overall fire 
impact in temperate ecosystems (Cocke et al. 2005). MTBS data are available 
online (http://www.mtbs.gov) in a variety of formats, including geospatial 
products and statistical summaries of annual burned area by region and 
ecosystem. 

LANDFIRE is a multipartner project producing 30 m Landsat-based maps 
of vegetation, fuel, fire regimes, and ecological departure from historical 
conditions across the United States (Rollins 2009). Leadership is shared by 
the wildland fire management programs of the USDA Forest Service and the 
U.S. Department of the Interior. LANDFIRE’s maps are widely used for both 
fire management and ecological modeling. Circa-2000 imagery was used to 
produce LANDFIRE’s original maps, and a combination of approaches is 
used to track subsequent disturbances so that maps may be kept up to date 
(Vogelmann et al. 2011). 

The initial updating mechanism involved intersecting LANDFIRE maps 
with the fire events mapped by the MTBS project (described above). This 
approach has recently been augmented with management activities (con­
ducted mostly on federal lands), which have been recorded in a spatial data­
base. Because a more automated process was needed for incorporating the 
effects of disturbance events, LANDFIRE has recently done extensive work 
with the VCT algorithm described earlier under the activities of the NAFD 
project. An estimated 30,000 Landsat images will ultimately be used to map 
disturbance extent and magnitude across the conterminous United States 
(Vogelmann et al. 2011). 

Because the cause, or type, of a disturbance plays an important role in its 
effect upon fuel conditions, cause attribution is underway for LANDFIRE’s 
VCT maps. This process makes use of the MTBS data to some extent, but 
it also currently involves a good deal of manual classification. Current 

http://www.mtbs.gov
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LANDFIRE disturbance-mapping efforts focus on the Landsat TM era, but 
extension into the MSS era is a longer term goal, as is continued mapping 
into the future. 

12.4 Forest Cover Conversion: Trends, NLCD, and C-CAP 

While the emphasis of the preceding projects has been on characterizing 
forest disturbance rates, permanent conversion of forest cover remains an 
ongoing process within the United States. The trend during most of the 
twentieth century was toward increased forest cover via agricultural aban­
donment. However, increased urban and suburban growth during the last 
50 years has altered this pattern in some areas. The projects discussed here 
have viewed forest change from the perspective of land cover conversion 
and have used Landsat-based change detection to separate gross forest 
change (including harvest and other disturbances) from the lower rates of 
long-term land cover and land use conversion. 

The USGS Trends project began in the late-1990s using a random sample 
of Landsat subsets, stratified by EPA ecoregion, to characterize both regional 
and national trends in land cover (Loveland et al. 2002). Each Landsat subset 
was either 10,000 or 40,000 ha (e.g., 10 km × 10 km or 20 km × 20 km). For 
each subset, images were collected for the years 1973, 1980, 1986, 1992, and 
2000 and manually classified into a series of land use classes, as well as two 
classes representing recent mechanical disturbance (harvest) and fire. As in 
the NAFD project, the sampling framework allowed sampling uncertainty 
to be quantified. The overall goals were to provide estimates of gross change 
with an uncertainty of <1% at an 85% confidence interval (Drummond and 
Loveland 2010). 

The Trends data set has been used widely for studies of land use conver­
sion (Drummond and Loveland 2010), ecosystem carbon (Liu et al. 2006), 
biodiversity, and surface energy balance (Barnes and Roy 2008). For the 
eastern United States, Drummond and Loveland (2010) assessed both gross 
and net forest cover change using the Trends data and concluded that east­
ern forests experienced 142,000 ha/year of net forest conversion during the 
1973–2000 period due mostly to urbanization, surface mining, and reservoir 
construction. Gross forest change rates were 2.5 times higher and mostly 
reflected harvest activities. 

The National Land Cover Database (NLCD) project, coordinated by the 
USGS EROS Data Center, has produced wall-to-wall U.S. maps of land cover 
for 1992, 2001, and 2006. While NLCD image selection criteria, classification 
methods, and target classes have evolved over the course of the project, 
significant efforts have been made to ensure interpretable maps of change 
among different land covers (Xian et al. 2009; Fry et al. 2011). Changes between 
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the 1991 and 2001 products were identified through a “retrofitting” process, 
which involved standardization of classification schemes, and a sequence 
of decision tree–based operations that first identified and then labeled land 
cover transitions. Differences in Landsat ratio-based indices were primary 
predictors for this process. 

Likewise, (different) Landsat-based indices were used in the 2001–2006 
change identification process, which used complex heuristic-based thresh­
old rules to identify changed pixels and to indicate whether changed 
pixels were losing or gaining biomass. This change-detection process, 
multi-index integrated change analysis (MIICA; Fry et al. 2011), produced 
change maps that were intersected with the land cover product from 2001 
(considered to be the base year) in nondeveloped areas to generate the 
2006 cover product. 

Mapping projects such as the NLCD’s are an important complement to 
inventory estimates of forest change. In the United States, the FIA provides 
ground-acquired estimates of land use not available from automated satel­
lite processes, and it provides a design-based error structure for its esti­
mates of net change of forest area. However, the FIA does not measure 
gross transitions to and from other cover types. NLCD can specify that its 
estimate of a net loss of 16,720 km2 of evergreen forest cover, for example, is 
the result of a 36,000 km2 gross loss and a 19,000 km2 gross gain (Fry et al. 
2011). As discussed earlier, maps also provide a picture of change at much 
more localized scales than is achievable with a simple random sample. 

The NOAA’s Coastal Change Analysis Program (C-CAP) maintains a 
nationally standardized database of landcover and landcover change in 
coastal regions of the country (Dobson et al. 1995). Thematic classes, includ­
ing those for forests, are consistent with those used in the NLCD (described 
earlier), and C-CAP is actually the source of the NLCD data in coastal zones. 
Landsat has been the basis for classification and change detection for C-CAP 
national maps using imagery from 1996, 2001, 2006, and 2011 (in progress), 
as well as high-priority local analyses going back to the mid-1980s. 

The 2001 cover map, produced from three dates of imagery collected by 
the MRLC (multiresolution land characteristics consortium), is considered 
the baseline product, and only those areas determined to have changed are 
reclassified in subsequent products (J. McCombs, NOAA, personal com­
munication). For changes between 2001 and 2006, CCA (crosscorrelation 
analysis) was used to detect change using imagery from the two dates. 
Landcover transitions were estimated with classification and regression 
trees (CARTs). Change detection between 2006 and 2011 will be consistent 
with the multithreshold change vector analysis used by NLCD (Xian et al. 
2009). Spatial data and customized summaries of CCAP maps are freely 
available from the CCAP Web site.* 

* http://www.csc.noaa.gov/digitalcoast/data/ccapregional/index.html 

http://www.csc.noaa.gov
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12.5  Synthesis of U.S. Forest Dynamics 

Given that several studies have used satellite data to quantify forest 
disturbance rates in the United States, how do these estimates compare 
with each other, and with inventory-based rates? Satellite-based estimates 
of disturbance rates are available in Masek et al. (2008), and via the MTBS 
data products (available online). In addition, Hansen et al. (2010) presented 
MODIS-based measures of gross forest loss that includes both disturbance 
and deforestation. Figure 12.3 shows a comparison among these estimates. 
We also show inventory-based estimates of harvest, fire, and insect damage 
from Smith et al. (2009) and U.S. EPA (2011) annualized for the 2000–2008 
period. Finally, we also derived an annualized rate of “stand-clearing”  
disturbance from the FIA by taking the area of U.S. forests less than 20 years 
of age, and dividing by 20, under the assumption that a stand-clearing event 
should reset the  measured stand age on the FIA plot. 

The range of estimates shows an expected trend, with shorter  re measurement 
periods (e.g., the annual NAFD) and finer resolution (e.g., Landsat vs. MODIS), 

FIGURE 12.3 
(See color insert.) Comparison of disturbance rates among satellite-based and inventory-

based studies. LEDAPS (Masek et al. 2008) and NAFD (Kennedy et al. in preparation) are based 

on Landsat change detection. NAFD (adj) reflects compensation for net omission errors based 

on visual validation. MODIS GFCL is based on MODIS gross forest cover loss (GFCL) (Hansen 

et al. 2010). The FIA (age < 20) is based on equating the area of young forestland from the FIA 

with an annualized turnover rate. The percent forest cover values are based on the area of for­

est land in the “lower 48” conterminous United States (~250 Mha). 
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leading to more disturbances mapped and higher overall rates (Figure 12.3). 
The LEDAPS result of 0.9% per year corresponds closely to the FIA-derived 
stand-clearing rate (0.9% per year) and the gross loss derived from MODIS 
(1.0% per year). The ability of the NAFD annual data to capture some thinning 
and partial harvest likely explains the somewhat higher rates (1.1% per year). 
Further adjusting the NAFD rates for the net omission error of the products 
would increase these rates further, to about 1.5% per year. 

All of these rates are significantly lower than what can be derived from 
inventory estimates alone (Smith et al. 2009; U.S. EPA 2010). This may reflect 
the difficulty in measuring minor disturbances using remote sensing, 
including selective harvest that does not significantly alter the forest 
canopy. Field- and satellite-based disturbance estimates may also differ in 
what they label “disturbance.” The FIA’s definition of disturbance includes 
“mortality and/or damage to 25 percent of all trees in a stand or 50 percent 
of an individual species’ count” (FIA 2011). In addition to the canopy  
mortality targeted through remote sensing, this characterization certainly 
includes large areas affected by insects or storms, where sublethal damage 
may affect only a small fraction of the trees. Thus, discrepancies in Figure 
12.3 may be due to both varying sensitivity and inconsistent definitions 
among data sources. 

12.6 Looking  Forward 

The opening of the Landsat archive and advances in computing technology 
have paved the way for broader and more innovative applications of Landsat 
data for forest monitoring. These innovations include mapping at wider 
geographic scales (e.g., wall-to-wall national monitoring), the use of dense 
time series to better characterize intra- and interannual variability, and a 
greater sophistication in leveraging multiple data sources to attribute the 
origin of forest change as well as ecosystem consequences. Given that the  
Landsat archive is most complete within the United States, it is natural that 
many of these techniques are being pioneered for U.S. applications. However, 
given the increased global data collections implemented for Landsat-7 and 
the upcoming LDCM (Landsat Data Continuity Mission), these approaches 
could be applied to global monitoring as well. 

12.6.1  Operational Monitoring of Forest Dynamics: LCMS 

The Landscape Change Monitoring System (LCMS) is under development by 
a consortium of scientists, agencies, and projects engaged in remotely sensed 
change detection in the United States. Coordinated by the Forest Service and 
Department of Interior/USGS, LCMS is intended to be a hub around which 
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existing national change products such as those from MTBS and NLCD may 
be integrated and extended. The ideal change monitoring system would pro­
vide up-to-date and consistent information about the location, magnitude, 
and nature of vegetation changes on all land cover types across the country. 
The research- and agency-based monitoring efforts described in this chapter 
address different aspects of this ideal system, and several steps are being 
taken under LCMS to promote both integration of existing products and 
cooperation on the development of new products. 

First, LCMS is conducting an independent needs assessment of the land 
management community. Acquired information about the type, precision, 
and frequency of needed land change information will guide development 
of new monitoring strategies. Many of the needed answers are likely to 
come from the combination of current resources. For instance, LANDFIRE 
is anticipating a more meaningful update of their fuel maps as fire records 
from the MTBS are augmented with more general all-disturbance map­
ping achieved through the VCT (Vogelmann et  al. 2011). Similar benefits 
of product integration likely extend into processes such as carbon account­
ing, where disturbance emissions are strongly influenced by event type and 
magnitude. 

Any new products developed by the LCMS to meet identified needs will 
likely depend heavily upon the Landsat archive and will draw upon the 
experience of participating partners. Like the MTBS project, the LCMS 
will follow a collaborative multiagency business model, with an empha­
sis upon meeting operational monitoring needs by producing consistently 
updated and validated products. The LCMS is expected to be deployed 
during 2013. 

12.6.2  Hypertemporal and Near-Real-Time Change Detection 

The use of dense image time series has pushed the “epoch length” (i.e., the 
time between images used for monitoring change) to shorter and shorter 
periods. Not surprisingly, the range of forest dynamics that can be assessed 
has expanded as well. While semidecadal time series are useful for moni­
toring net land cover change and stand-clearing disturbance (Jin and Sader 
2002; Drummond and Loveland 2010; Masek et al. 2008), more subtle distur­
bances require annual image acquisition. Thus the algorithms proposed by 
Kennedy et al. (2007) and Huang et al. (2010) are capable of detecting signifi­
cant thinning, partial harvest, and selective mortality from insects and dis­
ease. However, even these algorithms may not record subtle and short-lived 
degradation of the forest canopy due to insect defoliation, storm damage, 
and selective cutting. 

A variety of approaches are being prototyped to obtain seasonal or 
even submonthly information from Landsat. The WELD (Web-Enabled 
Landsat Dataset) project at the University of South Dakota is using MODIS-
style compositing to generate monthly and seasonal gridded composites 
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of Landsat-7 data. Zhu and Woodcock (in press) have proposed an approach 
to mapping forest disturbance by fitting per-pixel phenological curves using 
every available Landsat observation. These methods not only obtain greater 
sensitivity to short-term canopy changes, but by explicitly considering 
changes relative to observed phenology they minimize errors due to mis­
matches between annual image dates. 

12.6.3   Integration of Landsat with Active RS for Biomass Change 

Landsat data have proven robust for estimating the area affected by forest 
change processes. However, Landsat data have not proven as useful for  
forest volume or biomass estimation, except in conditions of sparse tree  
cover where volume can be directly related to canopy cover (Powell et al. 
2010). There are, however, a variety of ways in which change area from 
Landsat can be  combined with active remote sensing in order to better 
quantify “three-dimensional” changes in forest structure and  biomass. 
Direct fusion between Light Detection and Ranging (LIDAR) and Landsat 
has been proposed to improve retrieval of biomass. Landsat imagery has 
also been proposed as a way to spatially interpolate LIDAR  “samples” 
across the landscape using krigging techniques as well as a way to 
group LIDAR  measurements based upon patterns of forest structure and 
disturbance. More recently, disturbance and age information derived from 
Landsat have been combined with LIDAR data to estimate postdisturbance 
carbon  accumulation rates and to improve spatial interpolation of height 
(Li et al. 2011). In principle, similar work could be carried out using one-time 
biomass retrievals from radar (including interferometric SAR) combined 
with historical disturbance data from Landsat. 

12.6.4 Ecological Impacts of Climate Change and Recovery Trajectories 

The projects discussed here have focused mostly on quantifying the fraction 
of U.S. forest land disturbed and the fraction that reverts back to forest  
after disturbance. The spectral information of Landsat time-series data also 
offers important information on the rate at which ecosystems recover from 
disturbance. In one example, Schroeder et  al. (2007) related postharvest 
Landsat spectral trajectories in the Pacific Northwest to increases in canopy 
cover deduced from air photos. The current phase of the NAFD project is 
extending this work by assessing rates of forest recovery for all recently 
disturbed patches in the United States. 

One application for such approaches is to understand how ecosystem 
recovery may be responding to climate warming. A number of studies 
have suggested increased rates of forest decline in the southwestern United 
States due to prolonged drought (Williams et al. 2010), and van Mantgem 
et al. (2009) found evidence for increased rates of tree mortality throughout 
the western United States. Disturbance events (fire, insect outbreaks, and 
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disease)  may be accelerated in climate-stressed forests, and successional 
pathways may be altered or slowed. Ultimately the 40+ year Landsat record 
will prove  valuable for understanding the long-term shifts in forest composition 
and mortality associated with climate warming in the United States. 

12.7 Conclusions 

The application of Landsat remote sensing to the monitoring of U.S. 
forests has accelerated during the last decade. This trend reflects both the 
development of new algorithmic and computational approaches for dealing 
with large volumes of data and the opening of the Landsat archive for free 
distribution by the USGS. The projects discussed here represent large-
scale mapping efforts that have sought to characterize U.S. forest dynamics 
during the Landsat era, including disturbance, recovery, and conversion. 

Although the U.S. forest inventory will continue to provide our most 
robust national estimates of forest attributes, remote sensing is increasingly 
being called on to perform operational monitoring of forest and land cover 
change. The appropriate integration of geospatial information from remote 
sensing with forest attribute available from the FIA remains one of the 
significant challenges for the future. The k-nearest neighbor approach of 
assigning suites of FIA attribute data based on spectral properties has found 
acceptance within the USFS as it allows the statistical variance of the FIA-
reported attributes to be “imported” to the geospatial products (McRoberts 
et  al. 2002). Alternative approaches have sought instead to use statistical  
models to predict attributes from Landsat spectral data using the FIA 
attributes as training data (e.g., Powell et al. 2010) or to use Landsat-derived 
harvest maps to spatially distribute the FIA-recorded harvest volumes 
(Healey et  al. 2009). Ultimately the extent to which remote sensing can 
support operational needs depends on the trade-off between measurement 
error and sampling error. Landsat remote sensing can record wall-to-wall 
dynamics, and thus has no sampling error, but may exhibit significant 
errors of omission and commission (measurement errors) depending on the 
attribute of interest. 

The launch of LDCM in early 2013 will continue the Landsat legacy while 
providing a greater density of global acquisitions compared to Landsat-7. In 
addition, the ESA Sentinel-2 satellites will be launched during 2013–2014. 
Like Landsat, the Sentinel program has committed to open access for its 
archive. Taken together, the LDCM and Sentinel missions will provide an 
extremely rich source of global observations for the next decade. It is antici­
pated that many of the advances in the use of Landsat data described here, 
including time-series methods, will soon find global use. 
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13.1 Background 

The need to monitor greenhouse gas (GHG) emissions accurately has become 
a task of major importance over the last decade. Emissions and removals of 
GHG in the land sector represent a large proportion of Australia’s total GHG 
emissions. Following the signing of the Kyoto Protocol in 1997, Australia 
began developing a new system to account for emissions and removals from 
the land sector. The result, the National Carbon Accounting System (NCAS), 
is a fully integrated modeling system that utilizes data from a variety of 
sources to estimate emissions and removals for the purpose of reporting to 
the United Nations Framework Convention on Climate Change (UNFCCC 
2001) and accounting under the Kyoto Protocol. 

Under the Kyoto protocol, Australia was required to estimate emissions 
from land use and land use change in 1990 and from 2008 to 2012 (the first 
Kyoto Commitment period) while ensuring time-series consistency, limiting 
potential errors of omission and commission, allowing for annual updating 
at fine (subhectare) spatial resolution, and focusing on areas of change rather 
than total extent. The size of Australia (769 Mha) and the extent of its forests 
(110 Mha) required that robust and cost-effective methods that could be reli­
ably operated into the foreseeable future be developed to estimate emissions 
and removals from the land sector. A key component of this system would 
be to track areas of land use change. As no such data existed in Australia 
that could meet all of these criteria, the NCAS needed to consider alternative 
options to traditional forest inventory and mapping. 

The NCAS Land Cover Change Program (NCAS-LCCP) was developed 
by the Australian government in collaboration with the Commonwealth 
Scientific and Industrial Research Organisation (CSIRO) and other partners 
to meet the exacting requirements of the Kyoto Protocol. The NCAS-LCCP 
delivers the framework for fine-scale continental mapping and monitoring of 
the extent and change in perennial vegetation using Landsat satellite imag­
ery, allowing for an effective estimation of the GHG emissions from land 
use and land use change (Brack et al. 2006; Caccetta et al. 2010). The program 
has been successively developed (see, for example, Furby 2002; Caccetta et al. 
2003, 2007; Furby et al. 2008) over a number of years and  currently uses over 
7,000 Landsat MSS, TM, and ETM+ images at a resolution of 25 m for 18 time 
periods from 1972 to the present time (2011) and continues on an annual 
update cycle, making it one of the largest and most intensive land cover 
monitoring programs of its kind in the world. 



  
 
 

 
 

 

 

 

 

 

 

 

 

 

231 Long-Term Monitoring of Australian Land Cover Change 

While the remote sensing program was designed specifically for the 
purposes of GHG accounting, it has many additional benefits for bodies 
interested in monitoring land use change generally. The resultant products 
represent one of the few nationally consistent time-series data for the land 
sector. 

Moving remote sensing from the realm of a technical research program 
to fully operational systems with ongoing update cycles was a considerable 
undertaking. Issues of scientific expertise, technical capacity, ongoing data 
supply and analysis, and accessing and processing large archives of data all 
needed to be considered. While many of these issues, in particular, those 
related to storage and compute capacity, have largely been removed through 
technological advancements, the operation of such a system still requires 
ongoing planning and management. The operational procedures adhere to a 
strict processing guideline: the output from each processing stage is checked 
against specific accuracy and consistency standards through a rigorous qual­
ity assurance process. Given the above operating environment, accuracy, 
interpretability (for outsourcing and QA), computational efficiency, the abil­
ity to incorporate “better” algorithms, and reliability when applied through 
space and time are important aspects for consideration during methodology 
development. 

13.2  Materials and Methods 

13.2.1 Method  Selection 

Although no national-scale remote sensing program for land use change 
existed at the start of the NCAS program, several operational broad-scale 
monitoring programs [for example, Land Monitor (Caccetta et al. 2000; Land 
Monitor 2008) and SLATS (Goulevitch et al. 1999)] did exist at the subnational 
scale. These had been implemented to serve the natural resource management 
needs of subnational agencies rather than for the specific purposes of track­
ing land use change for carbon accounting. To assess the suitability of the 
differing methods, a series of workshops and pilot projects were conducted 
from which the national Landsat-based forest monitoring program was estab­
lished. The end product was not the whole-scale adoption of a single method 
but rather a selection of the best aspects of several different systems. 

The approach adopted is based on: 

r� Long-term sequences of orthorectified and calibrated Landsat MSS, 
TM, ETM+ satellite data 

r� Discriminant analysis techniques to (spectrally) separate classes of 
interest 



 

 

 

 

232 Global Forest Monitoring from Earth Observation 

r� Supervised and automated approaches to specify/estimate classifier 
parameters 

r� Spatial/temporal models to reduce errors 

As the task included the analysis and processing of thousands of historical 
Landsat scenes, as well as the requirement that the information be updated 
annually during reporting periods, operational components of the method­
ology were vital to the success of the system. To do this required: 

r� Detailed specification of the application of the methods in opera­
tions manuals (Furby 2002) 

r� Training and subsequent processing of the data by third parties with 
documented quality assurance checks 

r� Independent review of the outputs by an independent third party 
to provide insight into the characteristics of errors (Jones et al. 2004) 
for use in method refinement through a continuous improvement 
exercise 

13.2.2 Landsat  Data 

The initial step for the program was to develop specifications for the selec­
tion of Landsat scenes. Landsat has a return time of 16 days, resulting in 
around 22 images available per year for any specific area. To develop the 
annual maps of forest extent required by the system required selection of the 
optimal image. The selections were based on both preferred time sequence 
according to factors including reporting requirements, seasonality, green­
ness, sun angle, and other artifacts such as cloud, fire, and smoke. As the 
purpose of the program is to determine changes in forest cover, images that 
maximize the separation between tree and other cover (i.e., usually drier 
conditions) are generally selected. 

13.2.3  Landsat Data Geometric Rectification 

Accurate orthorectification of the Landsat data is vital to ensure that any 
change is due to real changes on the ground rather than edge effects due 
to image misalignment. In the NCAS-LCCP, this was achieved using a rig­
orous earth orbital model (PCI OrthoEngine software; Toutin 1994; Cheng 
and Toutin 1995), with a specification requiring subpixel accuracy. The 
first step was to establish a common orthorectified base mosaic of Landsat 
data. Once the orthorectified base was established, ground control points 
(GCPs) were automatically matched using a crosscorrelation technique and 
the temporal sequences of images orthorectified to the common base. This 
approach improves efficiency and accuracy of the results. For quality assur­
ance, visual inspection and numerical summaries based on crosscorrelation 



 

 

 

 

 

233 

a b c 

d e f 

Long-Term Monitoring of Australian Land Cover Change 

feature matching are used to assess the accuracy of orthorectification of the 
 time-series images. 

13.2.4 Image Calibration/Normalization 

Radiometrically calibrated images allow for comparisons between image 
scenes and the possibility of better extrapolation of a chosen classifier. 
We convert raw digital counts to be consistent with a chosen reference image. 

The five main steps in the calibration and normalization (see Figure 13.1) 
of the Landsat data are: 

r� Top-of-atmosphere (TOA) reflectance calibration (as described by 
Vermote et al. (1997), which is to correct the reflectance differences 
caused by the solar distance and angle. 

r� Bidirectional reflectance distribution function (BRDF) calibration, 
described by Wu et al. (2001). 

r� Empirical correction for atmospheric and other affine effects via the 
use of invariant targets (Furby and Campbell 2001). 

r� Terrain illumination correction (Wu et al. 2004), which is based on 
the C-correction (Teillet et al. 1982). This step is required where there 
are significant terrain illumination effects, resulting in bright and 
dark sides of hills and mountains. 

FIGURE 13.1 
(See color insert.) Image calibration (top) and normalization (bottom). Calibration: Landsat 

mosaic of Australia showing (a) uncalibrated, (b) TOA correction, and (c) TOA + BRDF correc­

tion. Normalization (From Wu et. al., 2004.): (d) uncorrected, (e) terrain illumination correction, 

and (f) estimated occlusion mask overlaid and shown in gray. (From Wu, X., et al., An approach 

for terrain illumination correction. Australasian Remote Sensing and Photogrammetry 

Conference, Fremantle, Western Australia, 2004.) 



 

 
 

   
 

 
 

 
 

  
 

    

 
 

 
 

234 Global Forest Monitoring from Earth Observation 

r� Occlusion detection (Wu et al. 2004) to identify terrain not observed 
due to the combination of terrain and the viewing geometry. This 
step identifies true shadow, which is labeled as missing data. 

A relatively high-resolution digital elevation model (typically better than the 
90 m SRTM) is required to achieve adequate occlusion detection and removal 
of terrain illumination effects. 

13.2.5  Landsat-Derived Texture Measures 

There are many natural and seminatural areas that have significant extents 
of heterogeneous perennial woody vegetation that do not meet the struc­
tural definition of forests or are at the lower limit of the definition of forests 
that is difficult to interpret and draw a line on a map so to speak. Here we 
refer to perennial woody vegetation having less than 20% canopy cover as 
sparse. 

Seasonal weather changes and management effects may change the char­
acteristics of these regions, and this in conjunction with the limited ability of 
remote sensing technology to distinguish this 20% canopy cover limit  typically 
results in seasonal transitions between forests and sparse. 

Based on observations that some sparse regions had a textured appear­
ance, measures of texture were demonstrated to have useful information  
for distinguishing between forest, sparse, and nonforest classes and have 
been trialled at subnational scale (Caccetta and Furby 2004), progressively 
being incorporated into the work described here (Furby et al. 2007), where 
the Landsat image bands are augmented with texture measures in the anal­
ysis. The “texture” measures are derived using an overcomplete wavelet 
decomposition (Unser 1995), with Haar basis functions applied to forest/ 
nonforest linear discriminant functions of the original Landsat bands. These 
measures are smoothed using an adaptive filter. This results in an n-band 
“texture image,” where each band is a texture estimated at a coarser scale. 
The  textures range from fine-scale textures in band 1 through coarse-scale 
textures in band n. In the following, bands are indexed as h0 … hn where h0 is 
the finest scale texture and hn the coarsest. 

13.2.6 Comments 

Some 7,000 Landsat MSS, TM, and ETM+ images over the past 39 years (from 
1972 until the present) have been coregistered to a common orthorectified 
base mosaic using the above methods. The process is ongoing with an annual 
updating process. The program also periodically evaluates the potential for 
data from other sensors such as IRS, SPOT, and CBERS (Furby and Wu 2007, 
2009; Wu et al. 2009) as possible candidates for operational use should data 
from the Landsat series no longer be available. To ensure access to those  
wishing to use data processed to this national standard, the data are then 
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provided back to the Australian government agency responsible for remote 
sensing. These data are then made available for the cost of data transfer. 

13.2.7  Forest Extent and Change Analysis 

13.2.7.1 Geographic Stratification 

Consistent with the experience of subnational programs, a stratified approach 
was adopted, allowing the local optimization of classifier parameters across 
the many different land cover−soil associations (Commonwealth of Australia 
2005, 2009) that exist in such a large area. The stratification was adaptively 
derived, starting from boundaries based on (Landsat) spectral and other 
(such as topographic) consistency properties of strata during analysis. In all, 
about 400 strata were defined, as depicted in Figure 13.2. 

13.2.7.2 Training and Validation Data 

The process of classification requires that a quantitative assessment of the 
information in the available data is performed; the class labels, after hav­
ing assessed the information in the data, are defined; a choice of model is 
made; and the accuracy of the results validated. Sample locations of known 
land cover are used to derive the classifier parameters or to train the clas­
sifier, and we refer to such data as training data. Similar sites independent 
of the training data are used to assess the accuracy of the results, and we 
refer to these data as validation data. The primary sources of training and 
validation data that have been used for the project include: about 800 histori­
cal aerial photographs whose locations are distributed across the continent; 

FIGURE 13.2 
Stratification zones with Landsat scene boundaries overlaid used in analysis and subsequent 

processing. Within each zone, training data are used to estimate the parameters of the 

 multitemporal classifier. 
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FIGURE 13.3 
(See color insert.) (Left) Graphical depiction of the location of high-resolution IKONOS data 

used in the derivation of classifier training information. (Right) Typically, samples are required 

by intersection of zone and image, though well-calibrated data can reduce this requirement by 

allowing extrapolation across scene boundaries in many cases. 

about 1,000 IKONOS images distributed across the continent (locations as 
depicted in Figure 13.3); and secondary less formal and generally available 
information such as regional expert knowledge, plantation location, and 
type information as provided by ground-based surveys and inventory infor­
mation where it exists. 

13.2.7.3 Multitemporal Model Used for Classification 

Here we follow the approach described by Caccetta (1997) and Kiiveri and 
Caccetta (1998) for combining the multitemporal land cover information 
provided by the Landsat observations to form multitemporal classifications 
of land cover. The approach uses a probabilistic framework for combining 
data, with the view to classifying the data. Useful properties of the approach 
include: 

r� Propagation of uncertainties in inputs and calculation of uncertain­
ties in outputs 

r� Production of hard and soft maps 

r� Handling of missing data by using all available information to make 
predictions 

r� Existence of well-developed statistical tools for parameter estimation 

We note these characteristics are useful in practice as operational monitor­
ing programs face issues such as availability of cloud-free imagery, variable 
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(historic) atmospheric conditions, and changing sensor characteristics 
resulting in time-series data that vary in quality, completeness, and spectral 
discrimination. 

13.2.8 Accuracy  Assessment 

The accuracy of the final forest presence/absence classification was inde­
pendently validated, with initial results recorded by Lowell et al. (2003) 
and a subsequent update by Jones et al. (2004). Results from the latter are 
summarized below (see Section 13.3.3). Validation involved the compari­
son of classifications against “truth” obtained from aerial photo interpre­
tation. The classes “forest,” “nonforest,” “regrowth,” and “deforestation” 
were considered. As noted by Lowell et al. (2003) and Jones et al. (2004), the 
sampling strategy was constrained by the availability of (historical) aerial 
photography and was further constrained by the variable quality and scale 
of the photography. Routine collection of aerial photography resides with 
the states within Australia, with the collection being tailored by the states 
to individual state needs. This results in variable geographic, temporal, and 
spatial resolution when considering a national program. 

Due to the variable availability and quality of aerial photography, Lowell 
et al. (2003) and Jones et al. (2004) adopted an approach that required the ana­
lyst to attach a degree of confidence to the cover class interpretations. Results 
were thus summarized as a “fuzzy” confusion matrix. 

13.2.9 Attribution 

Land cover change does not directly relate to land use change, in particular 
for deforestation and reforestation. Forest cover can change for a variety of 
reasons including clearing or establishment of trees, fire, pest attack, and 
drought. Further, there is a degree of error in any remote sensing analy­
sis that need to be removed wherever possible, especially to remove false 
change due to the random errors in forest extent between years. 

Attribution is a largely manual process that relies on expert judgment and 
experience. However, it can be greatly assisted by other products that allow 
for rules-based methods to be applied. For example, tenure can be used in 
many cases to separate forest cover loss due to forest management (such 
as clear felling) from that due to clearing for agriculture (deforestation). 
Mapping of fire scars can be used to separate change in forest cover from 
fire from areas of deforestation or forest management. Other mapping prod­
ucts, such as areas of known plantation establishment, allow for separation 
of areas of natural regrowth from human-induced reforestation. 

The process of attribution is directly related to the policy, reporting, and 
accounting requirements. While the remote sensing sets the base for the sys­
tem, it is the attribution that ensures that the final outputs of the system are 
policy relevant. 
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13.3  Results and Discussion 

The key outputs from the system are raw and policy-relevant time-series 
data of forest cover, forest cover change, forest cover trend, and plantations 
identified as being either hardwood or softwood. From these analyses, it 
is possible to effectively age areas of forest accurately from ages 1 to 38, with 
a further class of 38 years or older. 

The dense and extended time-series data developed through the NCAS­
LCCP allows for analysis that has not previously been available. Such data 
provide detailed insight into the key processes in the land sector that drive 
emissions and removals. 

13.3.1  Comparison to Existing Manual Mapping Products 

A variety of other mapping products exist in Australia that were devel­
oped for a number of purposes, including biodiversity, conservation, and 
watershed management (Commonwealth of Australia 2008, 2009). For the 
purposes of change analysis, such mapping products are unable to track 
the change in forest extent due to human-induced activities. For example, 
Commonwealth of Australia (2008) uses manual methods that are not time-
series consistent. Although these mapping products are constrained for 
change analysis, they still play a vital role in the estimation of emissions 
and removals from forests. This is an excellent example of using data that 
are fit for purpose. 

13.3.2  Relationship to Modeling and Natural Resource Management 

The remote sensing program has produced a rich source of spatial information 
for use in the emissions modeling framework, allowing Australia to report 
accurately on emissions and removals from the land sectors (Figure 13.4) as 
well as being used to report on rates of forest conversion. As the  program 
expands, new information is being derived and progressively incorpo­
rated into the framework. We briefly describe the progress of the land cover 
information derived to date. 

The forest presence/absence information has been derived for each of the 
Landsat epochs in the time series. Based on spatial and temporal rules, areas 
most likely to be plantations are identified and classified as being either 
hardwood or softwood (Chia et al. 2006). 

Spectral indices providing an ordination from forest to nonforest have 
been derived for each Landsat TM epoch for 1989 onward. The perennial 
vegetation cover trend information provides subtle information on historic 
changes within forest (and ultimately sparse) areas and offers a surveillance 
tool for forest managers (Wallace et al. 2006). See Lehmann et al. (2011) for 
details. These indices are used with an “ever forest” mask, which is derived 
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239 Long-Term Monitoring of Australian Land Cover Change 

FIGURE 13.4 
Emissions from forest land converted to cropland and grassland in Australia, 1990−2008. 

(From Australia National Inventory Report 2008.) 

FIGURE 13.5 
(See color insert.) Map of Australia showing NCAS forest extent (green) and sparse extent (red). 

from the union of any area identified as forests at any point in the forest 
presence/absence time series. Together they provide temporal information 
on the trajectory of a pixel. 

Sparse cover presence/absence classification (see Figure 13.5), which relies 
on image-derived spatial texture measures for discrimination, has been 
derived from the Landsat TM epochs in the time series 1989 onward (Furby 
et al. 2007). At the time of writing, the sparse cover information was being 
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prepared and was not temporally complete. Upon completion, the trend 
information will also be derived for this class similar as for the forest class. 

The land cover change information currently used for emissions modeling 
is the forest change (derived from the time-series presence/absence classifi­
cations) and the plantation type classification (Furby et al. 2008). 

13.3.3 Accuracy  Assessment 

The overall forest presence/absence accuracy statement, as summarized by 
Jones et al. (2004), p. 8 of the report, is: 

r� Nationwide, the NCAS definite error rate was ~3%.
 

r� Combined NCAS definite and probable error rate was ~12%.
 

r� Nationwide, the forest definite error rate was ~2%.
 

r� Nationwide, the nonforest definite error rate was ~4%.
 

r� Nationwide, the forest combined definite and probable error rate 

was ~6%. 

r� Nationwide, the nonforest combined definite and probable error rate 
was ~15%. 

r� The amount of forest is likely to be underestimated continent wide, 
but the exact amount is difficult to determine because the CIVP sam­
pling scheme was not a stratified or random sample. 

r� Regrowth and deforestation have considerably higher levels of errors 
associated with them, but are much rarer classes (only occurring ~2% 
and 1% of the time, respectively). 

For the sparse covers, plantation, and trend information, validation is yet to 
be performed and will be in the scope of future works. 
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14.1 Introduction 

14.1.1	  Background of Burned Area Mapping 

Wildfires are one of the most important drivers of land cover changes in 
Russia. They affect annually millions of hectares of forests and other  terrestrial 
ecosystems, such as tundra, grasslands, and peatlands (Korovin 1996). Earth 
observation allows characterizing the distribution and impact of wildfires 
from individual events up to the country level. Burned area mapping is a 

245 



 

 
 
 
 

 
 

 

 

 

246 Global Forest Monitoring from Earth Observation 

critical input for both fire management actions’ planning and postfire impact 
assessment, including economic and environmental aspects. 

There is a wide range of requirements for the delivery time and accuracy 
of burned area estimates in relation to the range of applications. Fire-fighting 
and suppression activities require information to be updated as frequently as 
possible and to be delivered to users as rapidly as possible. The fire-fighters 
require fire information to be updated very frequently, up to several times 
a day. However, they do not have stringent requirements for information 
accuracy. On another hand, the applications related to postfire impact assess­
ment are highly dependent on the accuracy of burned area mapping, but 
do not have strong requirements for data delivery speed as postfire impact 
assessment data can be delivered a few weeks or even a few months after the 
fires. Postfire assessment is used in particular for forest inventories,  forest 
management, biodiversity conservation, and carbon emissions reporting. 

For more than two decades, earth observation techniques have demon­
strated their capacities to provide various types of information related to 
vegetation fires, including active fire detection and monitoring, burned area 
mapping, and characterization. A number of methods have been devel­
oped for active fire detection based on the radiation temperature character­
istics of fires. These methods are based on the use of a few main satellite 
remote sensing instruments: NOAA-AVHRR (Li et al. 2001), ERS-ATSR2 and 
Envisat-AATSR (Arino et al. 2005), as well as Terra-MODIS (Giglio et al. 2003). 
In spite of attempts made to assess the extent of burned area directly from 
the detection of active fire pixels, such approaches are not considered very 
robust and are reported with large ranges of uncertainties. Eva and Lambin 
(1998) did not find any significant correlation between estimates of active fire 
pixels (derived from NOAA-AVHRR sensor) and assessment of burned areas 
in Central Africa. By contrast, Loboda and Csiszar (2004) reported a very 
high correlation (R2 =  0.99) between the number of active fire pixels (esti­
mated from MODIS sensors) and burned areas (derived from Landsat-ETM+ 
imagery) in Russia, with only about 10% underestimation. The fundamental 
shortcomings of such approaches are due to the combination of a few factors 
(Giglio et al. 2006), mainly: 

r� Masking of active fires by clouds and smoke 

r� Limited temporal frequency of satellite observations 

r� Spatial and temporal heterogeneity of fires, related in particular to 
a  large range of propagation speed, fuel contents, meteorological 
conditions, and temperature daily dynamics 

r� Coarse spatial resolution of the satellite sensors used for active fire 
detection 

On the one hand, as some of these factors are stochastic in nature, a consis­
tent assessment of burned area is difficult from these active fire detection 
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approaches, and the accuracy of results may significantly vary between 
regions and time periods. On the other hand, such approaches are consid­
ered the most appropriate for fire-fighting activities for which data delivery 
time is the most critical factor. 

A number of burned area mapping approaches are based on the  detection 
of intra or interannual changes in land cover spectral properties using time 
series of coarse-resolution satellite imagery (500 m–1 km) mainly from 
NOAA-AVHRR (Sukhinin et al. 2005), SPOT-Vegetation (Grégoire et al. 
2003), and Terra/Aqua-MODIS (Roy et al. 2008) instruments. These methods 
are usually based on surface reflectance measurements in the NIR or SWIR 
(near or short-wave infrared, respectively) spectral channels of these instru­
ments. The NIR and SWIR channels are either used as direct inputs into 
change-detection algorithms or through spectral vegetation indexes (such as 
NDVI, SWVI, or NBI) with high discrimination power to separate burned 
areas from green vegetation. Other research studies (Fraser et al. 2000a,b; 
Bartalev et al. 2007) have demonstrated the efficiency of the combined use 
of both approaches, i.e., the combination of (1) active fire detection and (2) 
burned area assessment from changes in land cover spectral properties. 

These latest approaches usually demonstrate higher accuracies for burned 
area estimates compared to methods based on active fire pixel detection 
only. Burned area products can also be produced on a regular basis, e.g., 
monthly (Zhang et al. 2003), decadal (Bartalev et al. 2007), or daily (Tansey 
et al. 2008) time frames. These products consist of multiannual time series of 
burned area data over large territories that are valuable inputs for the geosci­
ences and for environmental assessments. However, they have very limited 
use for forest inventory and management applications because finer spatial 
resolution and higher accuracy are required by foresters. Moreover, so far 
such methods do not allow for rapid data delivery in an operational manner. 
The information is usually made available to users with a substantial delay. 

There is also an extensive experience for burned area mapping from 
moderate spatial resolution (10  m–30  m) satellite optical imagery, such as 
Landsat-TM/ETM+ (Isaev et al. 2002). In spite of the existence of a number 
of methods, these methods have been mostly applied to episodic and local 
level assessments. Mapping of burned areas from moderate-resolution satel­
lite imagery over large areas and at regular time intervals has been restricted 
mainly by data availability until recently. This restriction has been reduced 
drastically through the recent open data distribution policy and online access 
to the global multiannual Landsat-TM/ETM+ data archive (see Section II.2). 

14.1.2  Forest Fire Monitoring Information System (FFMIS) 

Mapping of burned area is one key feature of the FFMIS, developed by a 
consortium of institutes belonging to the Russian Academy of Sciences. The 
FFMIS constitutes an essential component of several environmental monitor­
ing services, such as the VEGA service (Loupian et al. 2011), which is publicly 
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available, and the forest monitoring information system (called in Russian  
ISDM-Rosleshoz) operated by the Russian Federal Forest Agency (Loupian  
et al. 2006; Bartalev et al. 2008). The FFMIS covers the full territory of Russia  
and provides information to a range of forestry services, from the local forestry  
districts up to the federal forest agency. The FFMIS focuses on daily informa­
tion support for activities related to fire management and for environmental  
and economic impact assessment. Considering the size of the Russian territory  
and the users’ requirements for information delivery speed and frequency, sat­
ellite remote sensing technology has been considered as the main source of  
data in the system. The FFMIS uses as main inputs the multiannual and daily  
updated archives of data acquired by the Terra-MODIS and the Landsat-TM/ 
ETM+ instruments (since year 2000). The system considers three sources of  
input data for burned area assessment over Russia, as follows: 

 1.  Locations of active fires detected using the MOD14 standard algorithm  
(Justice et al. 2006) and MODIS Level 1B data (Toller et al. 2006) collected  
via a network of satellite data-receiving stations distributed across  
Russia. As a backup data source, the Fire Information for Resource  
Management System (FIRMS) Web site is also used for the daily down­
load of MOD14 products (http://firefly.geog.umd.edu/firms). 

 2. MODIS surface reflectance daily data including information on solar 
illumination and instrument viewing geometry (MOD09 standard 
products; http://lpdaac.usgs.gov/main.asp).

 3.  Landsat-TM/ETM+ data downloaded from USGS GLOVIS (http:// 
glovis.usgs.gov). By the end of the year 2011, the FFMIS archive of 
Landsat-TM/ETM+ data contained more than 122,000 scenes over 
the Russian territory including about 23,000 scenes acquired during  
the year 2011 only. 

A new approach for burned area assessment based on the integration of  
this large database has been developed by the Space Research Institute of  
the Russian Academy of Sciences. This new approach is aimed at benefit­
ing from the complementarities of the different data sources and includes 
highly automatic satellite data processing. The system creates three different 
burned area products:

 1.  AFBA product: Burned area polygons at 1 km spatial resolution. This  
product is based on the spatiotemporal clustering of active fire pixels  
derived from MODIS data with the use of individual satellite passes.

 2. SRBA product: Burned area at 250 m spatial resolution. This prod­
uct is derived from MODIS data using land cover surface reflectance 
change combined with active fire detection.

 3.  HRBA product: Burned area at 30 m spatial resolution. This product 
is derived from Landsat-TM/ETM+ data. 

http://firefly.geog.umd.edu
http://lpdaac.usgs.gov
http://glovis.usgs.gov
http://glovis.usgs.gov
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The integrated burned area assessment approach produces continuous 
information during the fire season. All available satellite imagery from the 
three potential data sources are used for any date and fire event. In cases of 
more than one burned area product being available for a given fire event, 
the following priority ranking is used to select the potentially most accurate 
product: (1) HRBA, (2) SRBA, and (3) AFBA. 

The AFBA product provides the most rapid assessment of burned areas. 
This product can then be complemented with one of both SRBA and HRBA 
products depending on their availability. The SRBA product is produced on 
a regular basis from daily MODIS data a few weeks after the AFBA product 
and is usually available before the HRBA product. However, when burned 
areas are too small to be retrieved from the SRBA product, only the HRBA 
product is used. In the following sections of this chapter, all three mentioned 
burned area products are described in more detail including the methods 
used to produce them and some results for Russia (national burned area esti­
mates with accuracy assessment) are discussed. 

14.2  Description of Three Burned Area Products 

14.2.1	   AFBA Product: Rapid Burned Area Mapping Based  
on Active Fire Detection from MODIS Sensor 

The AFBA burned area product is generated from MODIS data. The raw 
MODIS data are acquired in the direct broadcast mode via a network of 
receiving stations located in Moscow, Pushkino (Moscow region), Khanty-
Mansiysk, Novosibirsk, Krasnoyarsk, and Khabarovsk. The MODIS data are 
first preprocessed up to level 1B standard (MOD02 product) and are then  
used as inputs for the MOD14 active fire detection algorithm (Justice et al. 
2006) in order to produce so-called hot spots. Each hot spot is characterized 
by a number of attributes: (1) geographical coordinates, (2) on-the-ground 
pixel size (including both pixel widths along and across the sensor scanning 
directions), and (3) brightness temperature derived from two MODIS spec­
tral channels (with wavelength intervals centered at 4 μm and 11 μm). Then 
the hot spots detected from the acquired multitemporal MODIS  imagery 
are used to generate burned area polygons and to monitor their temporal 
dynamics. 

The FIRMS (http://firefly.geog.umd.edu) serves as an archive of hot spots 
detected with the MOD14 algorithm. All detected hot spots are automatically 
recorded into the FFMIS database with their attributes. The main role of the 
hot spot archive is to fill potential gaps resulting from accidental MODIS 
data-receiving stations’ failures or data delivery delays. 

http://www. firefly.geog.umd.edu
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The rapid burned area assessment includes the analysis of hot spot time 
series for the monitoring of fire temporal dynamics. An important step 
in this analysis includes the generation of active fire polygons from spa­
tially scattered hot spot pixels. This polygon generation process is carried 
out for each new satellite image using available historical hot spot dynam­
ics (i.e., hot spots detected on earlier imagery). The data-processing chain 
has been developed to provide both near-real-time burned area mapping 
and postfire season burned area assessment. The main steps of the near-
real-time burned area mapping method are described hereafter in more 
detail. 

Step 1: Retrieval of hot spot timing. The hot spots detected from MODIS imag­
ery are first characterized with their satellite observation times. This timing 
information is incorporated into the FFMIS database in order to build a con­
sistent data time series for further analysis. The hot spot observation time is 
assigned as the MODIS data-receiving time at the local receiving station or, 
in the case of FIRMS data, as the MODIS data granule time. 

Step 2: Generation of hot spot polygons. The generation of polygons around 
individual hot spots is an intermediate step. This step uses the MODIS pixel 
dimensions along and across the sensor scanning directions. The MODIS 
pixel dimensions are approximated by using geographical directions (along 
parallels and meridians). 

Step 3: Generation of active fire polygons. In order to generate active fire poly­
gons for each satellite image, the corresponding hot spot polygons have to 
be merged considering a spatial proximity criteria. Two hot spot polygons 
are merged into one single fire event if their areas are overlapping or the 
distance between them is less than 0.3 km. For each MODIS image, an indi­
vidual fire event polygon corresponds to a burned area estimate for the date 
of the satellite observation. By considering a full time series of such fire poly­
gons, an exhaustive burned area assessment can be carried out. 

Step 4: Generation of burned area polygons. This data-processing step is the 
most complex step. It consists in monitoring the fires dynamic and in aggre­
gating all individual fire polygons detected at different dates into one sin­
gle burned area polygon (corresponding to a single fire event). The FFMIS 
database includes full time series of all active fire polygons that have been 
detected from the beginning of the fire season. One essential step of the 
burned area polygon generation procedure is the decision to take for each 
newly generated fire polygon: either (i) to be aggregated to an existing regis­
tered fire event or (ii) to create a new fire event in the database. The fire poly­
gon identification procedure aims to check if derived from of last satellite 
pass data active fire polygon overlapped with or close (distance is less than 
1 km) to one of already existing burned area polygon. In case if outcome 
from such test was positive, the last active fire polygon is geometrically 
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merged to one of existing burned area polygon, otherwise it is considered 
as new event to be recorded in the database. The algorithm for active fire 
polygon identification includes also the consideration of particular cases or 
outliers which can significantly impact the burned area mapping results. 
One main particular case relates to new active fire polygons which overlap 
with more than one previously detected burned area polygon. In such case 
we assume that at the date of the new active fire polygon, these burned area 
polygons get connected and have to be considered later on as a joint single 
event. 

The hot spot pixels detected with 1 km spatial resolution MODIS data are 
used as input data for the generation of burned area polygons. These hot 
spot pixels are based on thresholds of radiation temperature within the sen­
sor’s field of view and can obviously include unburned area. Assuming that 
the burned area error reaches a maximum at the fire border and declines 
toward the center of the fire, we use a heuristic formula to correct directly 
the burned area estimates: 

where 
SG is the area of burned area polygons in km2; 
SC is the corrected burned area in km2; 
Δ = 1.1 is the nominal pixel size in km; 
σ = 0.25 is the coefficient of correction; 
k = 4 is a constant value. 

Equation 14.1 assumes that a higher relative error corresponds to smaller 
areas (and vice versa) due to a larger proportion of boundary pixels. 
According to Equation 14.1, the correction procedure reduces the burned 
area estimates with a maximum factor of 4 for fires smaller than k2 pixels. 
As fire size grows (SG →∞), the correction coefficient decreases up to a value 
of 1, and thus for very large fires the correction does not change significantly 
the area estimates. 

This burned area mapping method is implemented as an automatic pro­
cessing chain within the FFMIS. Each new MODIS imagery is processed 
automatically when acquired in the system. The system provides burned area 
updates with a frequency of up to six times a day. The full data-processing 
cycle takes from 20–70 min depending on the number and area of active fires 
and on available computing resources. In case of the FIRMS being used as 
the source for hot spots, the data delivery extra time is at least 50 min and is 
usually about 2–3 hours after the satellite pass. 
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14.2.2	   SBRA Product: Burned Area Mapping Based on Land  
Cover Change Detection from MODIS Sensor 

This product is aimed at providing wall-to-wall assessments of burned areas 
during the fire season with higher accuracy and reliability than AFBA prod­
uct. The method has been designed using existing approaches that combine 
two types of information derived from satellite imagery: surface reflectance 
changes and thermal anomalies (Fraser et al. 2000a,b; Bartalev et al. 2007). 
In such approaches, the thermal anomalies are used to separate fire-related 
land cover changes from other types of vegetation changes (due to other dis­
turbance factors). The SBRA product includes a step of comparison to his­
torical spectral dynamics. Historical multiannual satellite data time series 
are used to derive optimized land cover change-detection thresholds for any 
geographical location. 

The SRBA burned area product is generated at 250 m spatial resolution 
based on the use of two MODIS data standard products, namely: 

r� The multiannual daily surface reflectance MOD09 data;
 

r� The active fire (hot spots) MOD14 data for a single year.
 

The burned area mapping method includes several data-processing steps as 
follows: 

r� Detection of pixels contaminated by clouds and cloud shadows, 
sensor failures, and seasonal snow cover 

r� Building of multiannual time series of SWVI (short-wave vegetation 
index) daily composites from uncontaminated pixels 

r� Generation of the SWVI multiannual “reference” based on SWVI 
annual time series along a reference period 

r� Land cover change detection through detection of seasonal anoma­
lies by comparison to SWVI reference 

r� Burned area mapping using a consistency criteria between detected 
land cover changes and active fires 

The MODIS data preprocessing aims at detecting contaminated pixels and 
consists of following steps: 

r� Masking-out pixels with satellite observation and sun elimination 
angles above certain thresholds 

r� Detection of clouds, cloud shadows, and snow cover–related pixels 

r� Detection of residually contaminated pixels through statistical filter­
ing of time-series data 
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The threshold criteria, such as view zenith angle θ > 400 and sun zenith angle 
δ > 800, are applied to mask-out pixels which are not suitable due to extreme 
geometrical observation and illumination conditions. 

Clouds and snow-cover detection involves surface reflectance data as 
measured in the blue (459–479 nm) R3 and SWIR (1,628–1,652 nm) R6 MODIS 
channels, as well as normalized difference snow index (NDSI) (Hall et al. 
1995), which is calculated using Formula 14.2: 

Assuming that any pixel can be assigned to one of four classes (clouds, 
semitransparent clouds, snow, and “clear surface”), the R3 -NDSI bidimensional 
space (Figure 14.1) can be subdivided as follows: 

r� «Snow» if R3 > 0.05 and NDSI > 0.1 

r� «Clouds» if R3 > 0.05 and –0.2 < NDSI < 0.1 (14.3) 

r� «Semitransparent clouds» if R3 > 0.05 and –0.35 < NDSI < –0.2 

r� «Clear surface» in all other cases 

Pixels that are located in surroundings of «clouds» and «semitransparent 
clouds» areas are also classified as «clouds» or «semitransparent clouds» if 
their R3 value is equal or higher than 0.05. 

Assuming a maximum clouds’ height as H = 12 km and considering the 
measured sun and view zenith angles, we can reconstruct the potential 

NDSI 
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0.1 

Clear surface Clouds 
R3 
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Clear surface Semiclouds 

–0.35 

Clear surface 

FIGURE 14.1 
Discrimination of the classes of clouds, snow, and clear surface in the R3-NDSI space. 
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FIGURE 14.2 
Geometrical modeling of the cloud-shadow position on the Earth surface (AB line). 

cloud-shadow areas (Figure 14.2). If we consider an orthogonal coordinate 
system with origin O in a given cloud pixel with height H and axes Ox and 
Oy directed to geographical North and East, spatial shift of cloud shadow on 
the ground is estimated using Formula 14.4: 

where 
ψ—view azimuth angle 
θ—view zenith angle 
β—sun azimuth angle 
δ—sun zenith angle 

In general the geometrically modeled cloud-shadow areas include also “clear 
surface” pixels, which are removed from contaminated pixels through an 
additional spatial analysis step. The MODIS NIR channel R2   (841–876  nm)  
image profile is analyzed along the cloud-shadow line (Figure 14.3) to identify 
the correct shadow segments. 

The next analysis step is aimed at removing further false shadow pixels 
due to possible misclassification as clouds or snow-covered area with rela­
tively low NDSI. The shadow pixel is considered as false detection if during 
a monthly period it has never been classified as “clear surface” and the 
following expression is true for the potential cloud-shadow pixels: 

* * *R ( , )  t M  1 ( , )  Θ t +σR1 Θ t1 Θ > R ( , ),  (14.5) 

where 
MR1 ( , )4* t  is the mean estimate of surface reflectance data in red (620–679 nm) 

channel centered at day t during a 31-day period 
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FIGURE 14.3 
Example of spectral profile (MODIS NIR channel) with indication of sections corresponding to 

residual clouds (a), cloud shadows (b), and clear sky surface (c). 

σ R1 Θ
* t  is the standard deviation from mean ( , )

4*R1( , )t  is the red surface reflectance data for given pixel with coordi­
nates 4* 

The additional statistical data filtering is aimed at reducing residual noise 
through the use of a monthly moving time window. The pixel with sur­
face  reflectance R6 is considered as contaminated if the Expression 14.6  
is true: 

R6 ( ,Θ* t )  − MR6 (Θ* , t)  ≥ 2σR6 (Θ*,  t )  (14.6) 
  

From these preprocessing steps, the masks of different types of contami­
nated pixels are generated at 500 m spatial resolution. 

Our main criteria to detect fires which are causing vegetation cover 
changes (i.e., which are burning the vegetation) is based on daily time series 
of the normalized SWVI (Fraser et al. 2000a) 

SWSI is calculated using MODIS surface reflectance data (R6) resampled 
from 500 to 250 m. The contaminated pixels (detected during preprocessing) 
are reconstructed based on a moving time-window polynomial algorithm to 
retrieve SWVI. The burned area mapping method uses the SWVI multiannual 
seasonal reference which is derived from MODIS  time-series data acquired 
during previous years—so-called reference period. An experimental 
justification of the optimal reference period duration is given at the end of 
Section 14.2.2. 
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The assessment against the SWVI reference involves the estimation of 
N N * mean M 4* t and standard deviation σ Θ tSWVI( , ) SWVI( , ) for every pixel with 

geographical coordinates 4* and image date t(DOY): 

where 
y is the year within the reference period with duration of Y years 
Δt is the moving time-window length parameter for the SWVI intrayear 

statistical assessment 
N = Y(2Δt + 1) is the total number of measurements involved in the SWVI 

assessment for given pixel and DOY 

The detection of pixels likely affected by fire is based on pixel-to-pixel and 
Nday-to-day differences between MSWVI and the SWIR vegetation index time 

series for a given year SWVIC . The detection of seasonal dynamic anomalies 
is based on following Formula 14.10: 

C * N * N *SWVI Θ t −MSWVI( ,  )t < − σ SWVI Θ t( , )  Θ k ( , ),  (14.10) 

where k is an experimentally tuned constant that allows to define the range 
of the SWVI reference interannual dynamics. A pixel is considered as abnor­
mal and likely affected by a fire causing a land cover change if its SWVIC 

value is lower than reference SWVI seasonal values as presented in Figure 
N − σN14.4. Such approach uses automatic thresholds MSWVI k SWVI which are cal­

culated for any pixel location and date. 
At this stage, the detected pixels include pixels affected by land cover 

changes caused by fire and by other disturbance factors such as, for example, 
flooding, insect outbreaks, and extreme weather conditions. They include 
also false changes due to particular atmospheric and angular conditions of 
observations and residual effects of interannual differences in phenological 
vegetation dynamics. A contextual spatial filtering is applied to remove such 

4* W *false detections. The mean MW t and standard deviation σSWVI( ,  )SWVI( ,  ) Θ t
of SWVIC are computed using an increasing window size W for each given 
date t from five or more pixels surrounding a potential change pixel, with 
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FIGURE 14.4 
Example of fire detection from anomaly in the SWVI dynamics at pixel level. SWVI, short-wave 

vegetation index; DOY, day of the year. 

geographical coordinates 4* excluding those pixels which have been detected 
at the previous stage. The pixel is considered as changed if its SWVIC value 
is lower than (MW −σW ).SWVI SWVI 

Finally, a clumping procedure is applied to group pixels detected as 
changed vegetation into spatially connected regions for each day. The 
resulting clumped areas are then compared to MODIS-derived active fire 
data to separate burned areas from areas that were subject to land cover  
changes resulting from other disturbances. The clumped area is considered 
as burned area if more than 1% of its total surface is spatially and tempo­
rally (within a 20-day time window) consistent with MODIS active fire data. 
This 1% area threshold has been determined empirically through visual 
tests and is aimed at elimination of false burned area detection such as crop 
harvesting. 

This burned area mapping method requires setting values for a few main 
parameters. Two of them such as the reference period duration Y and the 
moving time-window length parameter Δt are aimed to determine the most 

N N *appropriate SWVI reference parameters M 4* t  and σSWVI( ,  ). A third SWVI( ,  ) Θ t
one, namely the scaling constant k, is used to define the reference range of 
SWVI for interannual variations. The most appropriate parameters’ values 
have been estimated through a number of tests performed with MODIS data 
over the European part of Russia, which experienced an extreme fire season 
in 2010 due to exceptional heat wave and drought. 

Figure 14.5 shows burned area as estimated by different combinations of 
reference period durations Y Y ,  and time-window length parameter ( 3 6)
values (Δt = 3 and Δt = 5). Following these experiments, Y = 5 and Δt = 3 were 
considered as most appropriate parameters values. The shorter reference 
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FIGURE 14.5 
Burned area estimates for a MODIS tile (H20V03 granule) and for the year 2010 using different 

reference period durations and time-window lengths (SBRA product). 
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FIGURE 14.6 
Burned area estimates with different scaling constant k values. 

period (Y < 5) led to more false burned area pixels (controlled through visual 
interpretation), while an increase of the reference period to 6 years resulted 
in a negligible increase of burned area. 

A number of burned area mapping tests have been also performed  
using  different values of the scaling factor k. Figure 14.6 shows that 
when varying the scaling factor value between 2 and 3 it does not lead 
to significant changes in burned area estimates. The abrupt decline at  
k = 3 leads to the conclusion that this value can be considered as the most 
appropriate. 
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This method allows generating daily SRBA products over the entire 
Russian Federation in a routine manner within 20–30 days depending on the 
availability of uncontaminated satellite data. 

14.2.3	   HRBA Product: Burned Area Mapping  
from Landsat-TM/ETM+ Sensor 

From the three burned area products of FFMIS, the HRBA is the product which 
takes most time to be delivered but which is potentially the most accurate at the 
level of individual fires. This product is derived from Landsat-TM/ETM images 
at 30 m spatial resolution. The main methodological difference with the two 
other burned area products stands is the involvement of human visual exper­
tise for burned area control and delineation from Landsat-TM/ETM imagery. 
Another important characteristic of the HRBA product is that it cannot be used 
alone for an assessment at country level: the HRBA product can only comple­
ment the national estimates derived from AFBR and SRBA. This is due to the 
potential gaps in suitable quality Landsat-TM/ETM imagery over the country 
during the fire season (missing data). The national yearly completeness of the 
HRBA product may also significantly differ from year to year due to availabil­
ity of human resources for assessment and interpretation of the imagery. 

The HRBA approach has been developed from the FFMIS web-service 
interface which provides access to remote sensing data and products 
along with mapping tools (Figure 14.7). The web-service interface is based on 
the GEOSMIS system which includes generic GIS and dedicated vegetation 
analysis tools (Tolpin et al. 2011). The information available from the web 
interface includes imagery from both Landsat-TM/ETM+ and MODIS sen­
sors as well as data on land cover, fires and meteorological conditions. 

FIGURE 14.7 
Display of the Web-service map interface with selected Landsat-TM frames. 
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In more details the web-service data analysis tools provide the following 
tools: 

r� Joint analysis of Landsat-TM/ETM+ and MODIS data, along with 
thematic maps and data 

r� Analysis of long-term time series of spectral vegetation indices to 
assess land cover changes and driving factors. The web-service 
allows to select an area of interest and to derive instantaneously a 
multiannual temporal profile of spatially averaged vegetation index 

r� Management of the database of burned areas (contours and 
characteristics) 

r� GIS analysis of satellite data and derived products 

The web-service allows for an easy and quick access to all products derived 
from Landsat-TM/ETM+ and MODIS satellite data, which are automatically 
and continuously downloaded from the USGS data archive. Daily MODIS data 
are automatically processed. First, pixels contaminated by clouds and other 
noise are eliminated, and then weekly composite images are  generated. These 
weekly composite images are used to produce normalized difference vege­
tation indices (NDVIs). Gaps in weekly time-series data are filled in though 
an interpolation procedure. Time-series data are then smoothed to reduce 
remaining noise due to cloud-contaminated pixels. The MODIS-derived NDVI 
time series are recorded into the database and used to create multiannual  
vegetation index profiles for each MODIS pixel. The Landsat-TM/ETM+ data 
are first preprocessed (radiometric and geometric correction), and then color 
composite images are made available trough the web interface. The MODIS 
data-derived land cover map of Russia for year 2010 at 250 m spatial resolution 
(Bartalev et al. 2011) is also made accessible through the web system. This map 
is the most up-to-date country-level map of forest type distribution. 

The web-service allows mapping burned areas at 30 m resolution when an 
ABFA polygon exists in the FFMIS database and a corresponding appropri­
ate postfire and cloud-free Landsat-TM/ETM+ image is available. The HRBA 
mapping procedure includes the following main steps: 

r� Selection of one MODIS-derived AFBA polygon and search of the 
best available Landsat-TM or ETM+ image 

r� Selection of the option: automatic or visual burned area delineation 

r� Visual evaluation of the automatic burned area delineation results 
and, in case of insufficient quality, replacement by visual burned 
area delineation 

The automatic burned area delineation method is based on a multispectral 
image segmentation algorithm (Zlatopolskyy 1985) combined with auto­
matic segment labeling and merging steps (Bartalev et al. 2009). The labeling 



 
 

   
 
 

 
 
 
 

 
 

  

  

261 Assessment of Burned Forest Areas over the Russian Federation 

FIGURE 14.8 
(See color insert.) Example of burned area polygons derived from the three methods: red 

polygon, AFBA product; black polygon, SRBA product; yellow polygon, HRBA product. The 

results are displayed in the Web-service user interface with the Landsat-TM scene used for the 

HRBA product as a background image. 

and merging steps are based on distance criteria from corresponding AFBA 
and SRBA polygons along with the brightness histogram analysis of 
Landsat-TM/ETM+ image. 

Figure 14.8 provides an example of burned area polygons derived from the 
three different methods available from the FFMIS web-service user interface. 

14.3  Integrated Burned Area Assessment 

The integrated burned area assessment approach consists in the combina­
tion of the three burned area products, AFBA, SRBA and HRBA, which are 
updated continuously during a fire season. This combination is aimed at 
producing best estimates of burned areas from all the products available in 
the FFMIS database. The fire events recorded from these three products are 
linked through an identification process which initiates from the MODIS 
hot spots–based polygons and related fire events in the AFBA database. The 
approach links these AFBA events to the fire events from the SRBA and HRBA 
databases. In case of a fire event existing only in the AFBA database (i.e., with 
no related event in the SRBA and HRBA databases), the related AFBA burned 
area is taken into account for the compilation of burned area estimates at 
national and regional levels and at daily frequency during the full fire season. 
When an event appears in the SRBA or HRBA databases the AFBA estimate is 
replaced by the estimate derived from the SRBA or HRBA event, with priority 
to HRBA product as it is considered to have higher accuracy. 

However the practical implementation of this approach is complex due to 
the difficulty to set unique correspondences between fire events from the 
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three burned area products. It happens often that several AFBA polygons 
overlap with one unique HRBA polygon, due to a complex spatial pattern 
or to limitations in data availability. The relationship between AFBA and 
SRBA polygons is in general even more complex as one single fire event on 
the ground can correspond to several polygons with no spatial correspon­
dence between the two set of polygons. The impact of this lack of coherence 
on burned area estimates is limited over large territories, e.g., at national or 
regional scale. However this issue has to be taken into account for assess­
ment at the level of individual fire events. 

In order to address such issue, the integration procedure includes a step of 
polygon clustering. The clustering procedure is aimed at identifying  polygons 
that are likely to be related to the same fire event. The SRBA and HRBA 
polygons are grouped within clusters which are linked to the AFBA polygons. 
An analysis of interlinkages between polygon pairs is carried out for the AFBA– 
SRBA and AFBA–HRBA combinations. The clustering  procedure  subdivides 
the total set of polygons into subsets of polygons which are  considered to 
be related to single fire events. This clustering procedure provides for more 
detailed intercomparison and analysis at individual fire event level. 

14.4 	 B urned Area Assessment over Russian  

Federation for Year 2011 

The three burned area mapping methods, AFBA, SRBA and HRBA, and the 
integrated assessment approach have been applied over the full territory of 
the Russian Federation to estimate the extent and impact of the fire season 
of year 2011. 

From the AFBA product the estimate of total burned areas for year 2011 
over the entire country is 10.27 million ha, including 5.06 million ha of burned 
forest areas. For the same year the SRBA method leads to an estimate of 10.41 
and 4.38 million ha of total burn areas and burned forest areas respectively. 
When looking at the burn area estimates derived from the SRBA method 
during the last 7 years, it appears that the 2011 fire season was obviously of 
not exceptional magnitude in Russia (Figure 14.9). 

From the FFMIS database of available Landsat-TM/ETM+ imagery 
acquired during year 2011, the HRBA product has resulted in 3,609  polygons 
with a total burned area of 5.94 million ha, including 4.00 million ha of 
burned forests. The burned area sizes of individual fire events show a wide 
range as presented by their distribution histogram (Figure 14.10). Being not 
comprehensive enough to provide an accurate estimate at country level, this 
data set can be used as reference for and evaluation of the accuracy of burned 
area products derived from MODIS data. This product is also critical for the 
integrated burned area assessment. 
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FIGURE 14.9 
Annual estimates of burned areas (derived from the SRBA product) over the Russian Federation 

from 2005 to 2011. 
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FIGURE 14.10 
Burned area distribution of fire events from the HRBA product derived from Landsat-TM/ 

ETM+ imagery. 

The cross-comparison of Landsat-TM/ETM+ and MODIS hot spot–derived 
burned area products including both initial and corrected estimates (correction 
using Formula 14.1) demonstrates a bias reduction for corrected estimates in 
particular for small burned areas (<1,000 ha) burns (Figure 14.11). 

The accuracy of forest burned area estimates derived from the AFBA 
product and corrected with Formula 14.1 has been assessed from the 
comparison to the HRBA product with the following results:
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FIGURE 14.11 
Correlation between burned areas from the AFBA product (MODIS hot spots) and burned 

areas from the HRBA product (Landsat-TM/ETM+): (a) before correction and (b) after correc­

tion for bias using Equation 14.1. 

A similar assessment has been made for the SRBA product (Figure 14.12):

 RMSE = ±1.52% and bias = –8.7% 

Figure 14.13 shows a decrease of RMSE as a function of the area size for small 

burns (<1,000 ha) considering either all wildfires together or only forest fires.
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FIGURE 14.12 
Correlation between burned areas from the SRBA product (MODIS surface reflectance change) 

and burned areas from the HRBA product (Landsat-TM/ETM+) with identification of spring 

and summer fires (before or after June 1). 

50 

40 

600 700 800 900 1,000 

RM
SE

, %
 

30 

20 

10 

0 
100 200 300 400 500
 

Area, ha
 
All burns
 Forest burns 

FIGURE 14.13 
RMSE (root mean square error) of burned area estimates from the SRBA product in relation to 

burned area size for total burned areas and forest burned areas. 

The combined use of all three burned area products into an integrated 
assessment leads to an estimate of 14.32 million ha of total burned area 
including 5.79 million ha in forest domain only. Table 14.1 shows the burned 
area estimates from the three burned area products and from the integrated 
assessment at the levels of entire country and federal districts of Russian 
Federation. Figure 14.14 shows spatial distribution of the burned areas of the 
year 2011 across the territory of Russia. 
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14.5 Conclusions 

This chapter presents an approach for the mapping of burned forest area that 
combines two remote sensing data sources: MODIS and Landsat-TM/ETM+ 
satellite imagery. This approach is aimed to answer to two main users’ 
requirements: rapidity of information delivery and accuracy of estimates. 
The approach includes three complementary burned area products at 1 km, 
250 m, and 30 m spatial resolution, respectively. 

The first burned area product (AFBA) is based on temperature anoma­
lies detected from MODIS data at 1 km resolution. This product is gener­
ated with the most rapid but least accurate method. It allows providing 
burned area estimates several times a day with an acceptable level of accu­
racy. The second burned area product (SRBA) is based on the use of MODIS 
data-detected surface reflectance changes combined with radiation tempera­
ture anomalies. This method is less rapid (daily assessments are produced 
within 20–30 days delay) but leads to more accurate results at 250 m resolu­
tion. These two methods are fully automated and allow producing regular 
updated wall-to-wall burned assessments for the entire Russian Federation 
during a fire season. 

The most spatially accurate burned area product (HRBA) is derived from 
Landsat-TM/ETM+ imagery. This product on its own does not allow provid­
ing a comprehensive burned area assessment at the country level but is con­
sidered as complementary to the MODIS data-derived estimates. However, 
this approach was applied operationally over the Russian Federation for the 
fire season of year 2011 and has resulted in the detailed mapping of 3,609 
burned area events. The total burned areas derived from Landsat-TM/ETM+ 
imagery correspond to about 57% of total burned areas and to about 91% of 
total burned forest areas derived from the 250 m product for entire Russia 
during the year 2011. 

The MODIS-derived products have different levels of RMSE (14.1% and 
8.7% for AFBA and SRBA, respectively) with an underestimation of burned 
areas. Our integrated burned area assessment approach allows providing 
more comprehensive and accurate estimates. 
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15.1 Introduction 

Remote sensing data acquired by synthetic aperture radar (SAR) provide 
unique opportunities for forest characterization, mapping, and monitoring, 
largely because of sensitivity of the radar signal to vegetation physiognomic 
structure and the provision of observations that are largely independent of 
atmospheric (e.g., cloud and smoke haze) and solar illumination conditions. 
Spaceborne SAR have been operating at a near global level since the 1990s, 
and the wide range of frequencies, polarizations, and observation strategies 
provide numerous opportunities for retrieving information on the past and 
current state of forests and surrounding landscapes and changes associated 
with natural and anthropogenic change, including climatic fluctuation. 
The development of systems and algorithms for characterizing, mapping, 
and monitoring forests, however, has been informed by studies using data 
acquired by SAR onboard airborne and spaceborne systems (e.g., the Shuttle 
Imaging Radar) and through dedicated missions. 

This chapter reviews the use of spaceborne SAR for forest monitoring at 
regional to global scales. Particular focus is on the use of single- and dual-
polarization backscatter data acquired at X-, C-, and L-bands, as these are 
the most widely available to those charged with forest monitoring. However, 
examples of how polarimetric SAR (POLSAR) and inteferometric SAR (InSAR) 
data can be used to improve monitoring are considered. The chapter provides 
essential background information on SAR and an overview of how key change 
processes of deforestation, degradation, and regeneration/afforestation can 
be detected using these data. Case studies relating to SAR-based monitoring 
of tropical rainforests in the Brazilian Amazon and Borneo, tree–grass savan­
nas in Australia, and boreal forests in Siberia are then presented. Advantages 
of SAR for forest monitoring, either singularly or in combination with other 
sensors, are conveyed. The future of SAR for forest monitoring is discussed, 
particularly as this type of data is now increasingly used in support of local, 
national, and regional to global forest monitoring frameworks. 
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15.2  Suitability of SAR for Forest Monitoring 

15.2.1  Forest Structural Diversity and Radar Modes 

A wide range of forest types exist globally, with distinct formations occupy­
ing large areas including tropical rainforests, boreal and temperate forests, 
and tree−grass savannas. In all biomes, forests can be broadly categorized 
into evergreen, semi-deciduous, or deciduous. Common leaf types include 
broad-leaf, needle-leaf, and palm-like. Canopy cover ranges from sparse to 
closed and primarily as a consequence of prevailing environmental condi­
tions (e.g., precipitation, evapotranspiration, soil types). As well as cover, 
forests are often distinguished on the basis of height and the number of 
canopy layers which, when distinct, can range from single layer (with no 
understory) to multilayer. The plants themselves also vary in their moisture 
content, canopy form and orientation, density, and size of their foliar and 
woody components. The substrate underlying forests may range from dry to 
wet and be smooth or rough, depending on the soil and geology and levels 
of inundation. Forest structure in all regions is highly variable and depends 
on growth stage, management practices, and natural and human-induced 
events and processes. 

These different characteristics of forests are primary determinants of 
the variability in the SAR response at different frequencies and polariza­
tions and over time. Hence, an understanding of microwave interactions 
with different components of the vegetation and the underlying surface is 
essential if these data are to be used for monitoring. A recent overview of 
imaging radar principles is provided in Kellndorfer and McDonald (2009), 
but information specific to forest monitoring is conveyed in the following 
sections. 

15.2.2  SAR Frequencies and Polarisations 

Spaceborne SAR, which provide capacity for monitoring over large areas, 
operate at X- (~9.6 GHz, 3.1 cm), C- (~5.3 GHz, 5.7 cm), and L-bands (~1.275 
GHz, 23.5 cm). Within closed-canopy and taller forests, the shorter X- and 
C-band waves interact primarily with the foliage and smaller branches in 
the upper layers of the canopy and allow discrimination of forest types 
primarily as a function of differences in their leaf and small branch dimen­
sions, orientations, and densities (Mayaux et al. 2002). However, in more 
open forests (e.g., tree–grass savannas), interactions may occur with the 
ground and woody components of the vegetation (Lucas et al. 2004). In all 
forests, microwaves emitted at lower frequency (L- and P-bands) generally 
penetrate through the smaller elements of the canopy and interact with the 
larger woody branches and trunks and ground surface. 
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At all frequencies, single- and double-bounce scattering result in a large 
amount of reflected energy returning to the sensor in the same polariza­
tion as that transmitted (i.e., HH or VV, with H and V representing the 
horizontal and vertical polarizations, respectively). The strongest returns 
are often at HH polarization, where double-bounce scattering between the 
ground  surface and vertical structures (e.g., plant stems) occur, enhanced 
when forests are inundated by water. Volume scattering leads to depolariza­
tion of the transmitted signal and is caused by multiple interactions with 
structures (e.g., branches, leaves) that have multiple angles of orientation. 
Returns are comparatively lower from the cross-polarized wave (i.e., HV or 
VH) and are  typically minimal for bare areas, including water. However, the 
HV backscatter generally increases asymptotically with the amount of plant 
material in the canopy and has been related to the above ground biomass 
(AGB) of forests at lower frequencies. 

15.2.3 Interferometry 

Spaceborne X-, C-, and L-band interferometric data have been used to map 
forest extent, the distribution of plant components in the forest volume, 
and canopy height. With single pass interferometry, one antenna is used to 
emit and receive a wave (in a single polarization), while a second detects 
the same polarization component of the reflected wave. In other words, 
both antennas measure the backscatter in the same polarizations but, as 
they are separated in range direction over a certain baseline, this causes 
a very small time lapse between the reception of reflection. This can be 
associated with the angle of the observed scatterer while the total elapsed 
time corresponds with the distance of the scatterer. Consequently, the posi­
tion and height of the so-called scattering phase center can be determined. 
In areas without vegetation, the height of the terrain can be determined, 
while in areas with high vegetation in a single-resolution cell, scatterers 
over a range of heights are present. This range of phases is expressed by a 
parameter called interferometric phase difference, and the total correlation 
(normalized similarity) between the two data is commonly referred to as 
coherence. Most current SAR systems allow repeat pass interferometry, which 
is based on the use of only one antenna where the second measurement 
is undertaken within a short time period (from hours to weeks) and from 
a slightly different position (thereby forming the baseline). Coherence is 
high (approaches 1) when the same interaction with objects on the ground 
occurs between two images and decreases as a result of temporal decor-
relation (e.g., because of changes in environmental conditions including 
surface moisture and wind) and volume decorrelation (because of vari­
able scattering within volumes, including forests, as a function of observa­
tion parameters). Interferometric coherence is typically lower over forests, 
although it depends upon the season of observation. 
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15.3  Development of SAR for Forest Monitoring 

15.3.1 Sensors Available for Monitoring 

The benefits of using SAR for forest monitoring were recognized by a number 
of early studies, commencing with the 1970 Brazilian RADAMBRASIL project, 
in which airborne X-band SAR data were acquired over the entire Brazilian 
Amazon Basin, and followed by those making use of the shuttle imaging radar 
(SIR-A/B, SIR-C) SAR missions and other airborne datasets (e.g., NASA’s 
AIRSAR). The Japanese Earth Resources Satellite (JERS-1) SAR provided 
the first L-band observations globally over the years 1992 to 1998 while the 
Canadian RADARSAT SAR and SAR on board the European Remote Sensing 
(ERS-1 and -2) satellites provided C-band observations and interferometric 
capability. From the mid-2000s and onwards, Italy and Germany launched 
X-band satellite missions, the COSMO SkyMed constellation and TerraSAR-X. 
Fully polarimetric observations were provided by the advanced land observing 
satellite phased array L-band SAR (ALOS PALSAR) (L-band), RADARSAT-2 
(C-band), and TerraSAR-X (X-band) instruments at a near global level. The 
2000 Shuttle Radar Topographic Mission (SRTM) and the TanDEM-X mission 
from 2010 provided unique capability for generating digital surface models 
(DSMs) at global scales, allowing retrieval of canopy height in more densely 
vegetated areas and the topographic ground surface. 

The practical use of SAR for forest monitoring has followed developments 
in the technology and observation capability. The RADAMBRASIL project 
was the first to provide a baseline of the extent of forest cover in the Brazilian 
Amazon without interference from cloud or smoke haze. Focusing on more 
local areas, the SIR-C missions (X-, C-, and L-bands) allowed researchers to 
identify the benefits of using different radar wavelengths and polarizations 
for detecting forest extent, characterizing areas cleared of forest, and retriev­
ing forest biomass and structural attributes (Kellndorfer et al. 1998). The 
capacity of interferometric SAR for retrieving forest height across larger areas 
was demonstrated using SRTM (Kellndorfer et al. 2004). The JERS-1 mission 
provided the first consistent pan-tropical and pan-boreal observations, from 
which regional-scale mosaics of the boreal and tropical zones were generated 
as part of the global rain forest mapping (GRFM) and global boreal forest map­
ping (GBFM) projects (Rosenqvist et al. 2000). The long-wavelength L-band 
SAR data proved useful for the classification of forest/nonforest areas and 
identification of secondary growth (Sgrenzaroli et al. 2002), particularly when 
time-series data were used. The L-band HH data also facilitated temporal 
mapping of standing water below closed-canopy forests, and hence differentia­
tion of floodplain and swamp forests, and better understanding of the seasonal 
dynamics of inundation across large river catchments such as the Amazon  
and Congo (Hess et al. 1995). The successor of the JERS-1 SAR, the ALOS 
PALSAR, provided the first global systematic observations at a global level 
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between 2006 and 2011. The ALOS mission highlighted the potential of SAR 
for operational forest monitoring, with the HV data providing better detection 
of deforestation across many regions compared to HH data. As the data accu­
mulated into a time series, the benefits of using these and also JERS-1 SAR data 
for identifying events or processes that might lead ultimately to expansion 
of the area deforested or degraded or tracking histories of land use became 
apparent. As well as changes in the backscattering coefficient, interferometric 
observations proved useful for detecting disturbances within the canopy and 
suggested capacity for  mapping degraded  forest or identifying specific events 
(e.g., selective  logging). In the boreal regions in particular, the advantages of 
using coherence data derived from combinations of spaceborne C- and L-band 
SAR for forest characterization, mapping, and monitoring became apparent. 
The advantages of integrating data from multifrequency SAR, optical sensors, 
and light  detection and ranging (LiDAR) were also recognized. 

15.3.2  SAR Observation Strategies 

The use of satellite data for forest monitoring is currently moving from local 
studies on a limited number of satellite scenes, to regional or national scales 
where whole countries are to be monitored on a regular basis. Many coun­
tries have or are establishing operational national forest monitoring  systems 
to meet their national reporting obligations in support of inter national 
conventions, with a key driver being the UN Framework Convention on 
Climate Change (UNFCCC) Reduction of Emissions from Deforestation and 
Degradation (REDD+). However, national-scale monitoring requires the 
availability of satellite sensor data that are consistent over countries, in terms 
of both coverage (no gaps) and temporal frequency (all acquisitions within a 
limited time period). A major strength of remote sensing technology is that 
long-term, systematic, and repetitive observations can be provided over 
large areas, particularly as SAR is not limited by low sun angles or  persistent 
cloud cover. However, many moderate (10–30 m) spatial resolution  sensors 
have not acquired data uniformly and regularly across large areas but 
have, instead, focused on areas where  specific requests have been submit­
ted. Consequently, some areas have received  systematic coverage over long 
periods of time while neighboring areas have been totally neglected. Many 
satellite missions have also followed gap-filling background mission objec­
tives as and when operational resources permit. However, the data have 
often been acquired without consideration given to the impacts of temporal 
effects, and the heterogeneous archives are of limited use. 

Optical missions, and notably Landsat, have generally been more success­
ful than their microwave counterparts, particularly over countries that have 
their own ground receiving stations. However, where regions are associated 
with frequent cloud cover, obtaining a full national coverage on an annual 
basis remains a major challenge. While more or less continuous observations 
are available through coarser spatial resolution MODIS or AVHRR data, the 
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significantly higher data rates associated with moderate or fine spatial res­
olution sensors require a higher degree of planning if regional fragmenta­
tion is to be avoided. Therefore, a systematic observation strategy is needed 
for moderate and also fine (<10 m) spatial resolution datasets in order to 
meet the requirements of a remote sensing–based national forest monitoring 
system. In particular, the following should be taken into consideration, as 
highlighted by Rosenqvist et al. (2003): 

r� Spatially and temporally consistent observations over large areas 
to avoid gaps in acquisitions and minimize backscatter variations 
caused by seasonal differences in surface conditions between passes 

r� Adequate repetition frequency to facilitate detection of temporal 
changes as a result of, for example, flooding or land use 

r� Appropriate timing such that long-term repetitive observations are 
taken over the same time frame each year and ideally targeted to 
seasons where backscatter conditions are more stable 

r� Consistency in sensor observation modes such that acquisitions are 
limited to a small number of “best trade-off” sensor modes, thereby 
maximizing data homogeneity and minimizing programming conflicts 

r� Long-term continuity such that observations can be continued from 
sensors that are preceding or launched in the future 

The first radar-based systematic observation strategy dates back to experiences 
gained with the JERS-1 SAR which, during the last 3 years of its lifetime (1995– 
1998), was used to acquire data in a consistent manner over the entire tropical 
and boreal zones of the Earth (Rosenqvist et al. 2000). For the first time, the util­
ity and feasibility of acquiring moderate spatial resolution data systematically 
and repetitively at continental scales was demonstrated. The global acquisi­
tion strategy concept was implemented, in full, for the ALOS satellite, with the 
PALSAR programmed to achieve at least one gap-free coverage of all land areas 
every 6 months (Rosenqvist et al. 2007), as illustrated in Figure 15.1. 

The importance of systematic acquisition strategies is becoming increasingly 
recognized, and a number of near-future satellite missions are planning simi­
lar global observation plans. Of particular note was the joint effort made from 
2012 to establish a coordinated multimission acquisition strategy by a number 
of national space agencies under the framework of the global forest observa­
tion initiative (GFOI) of the group on Earth observations (GEO), comprising
 moderate-to-fine (<10 m) spatial resolution optical and X-, C-, and L-band SAR. 

15.3.3  Synergistic Use of SAR and Optical Data 

The development of a forest monitoring program that integrates both SAR 
and optical data acquired across a range of frequencies is ideal and the 
benefits are being increasingly realized, with demonstration in a few cases 
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PALSAR 10 m global mosaic 2009 ALOS 

R:HH G:HV B:HH/HV 

©JAXA, METI Analyzed by JAXA 

FIGURE 15.1 
(See color insert.) Global ALOS PALSAR color composite mosaic at 10 m pixel spacing (R: HH, 

G: HV, B: HH/HV). 95% of the data—a total of approximately 70,000 scenes—were acquired 

within the time period June–October 2009. (Courtesy of JAXA EORC, Tsukuba, Japan.) 

(e.g., Queensland, Australia). The benefits include the provision of comple­
mentary information on the foliage/canopy and woody components of veg­
etation, which can assist mapping of forest types (e.g., regrowth, mangroves) 
and retrieval of linked biophysical properties (e.g., canopy cover and AGB). 
SAR data can also be used to “in fill” gaps in time series of optical remote 
sensing data where cloud or haze cover prevents acquisition of the latter or 
the revisit frequency or timing of acquisition is suboptimal. ScanSAR data, 
in particular, have proven to be particularly useful for this purpose. Where 
the timing of SAR and optical data acquisitions is not coincident, more com­
prehensive time-series datasets detailing changes in forest cover can be 
generated. SAR data may also prove to be the workhorse of operational mon­
itoring programs in the event of failure by one or more sensors (e.g., Landsat). 

A multi-sensor and multi-scale approach to monitoring also allows better 
detection of hotspots of change (e.g., through observations of fire activity 
from, for example, MODIS) or areas that are vulnerable to future change. 
For example, fire activity detected by sensing in the middle or thermal infra­
red wavelengths from coarse spatial resolution sensors of high temporal fre­
quency can be followed up by SAR observations of the area affected (Siegert 
and Hoffman 2000). Adverse changes in the long-term trends in measures 
of vegetation productivity (e.g., the normalized difference vegetation index 
[NDVI] or enhanced vegetation index [EVI]), as derived from coarse spatial 
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resolution optical  data, may indicate areas of regrowth or degradation 
involving accumulation or loss of plant material, which can potentially be 
characterized through time-series comparison of SAR data. In both cases, 
fine spatial resolution and programmable data, such as that provided by 
the Tandem-X mission or very high-resolution (VHR) optical sensors (e.g., 
Worldview, Quickbird), can then be used to associate observed changes with 
an actual or likely cause such that measures can be put in place to prevent 
further loss or degradation of forests. Long-term and regular wall-to-wall 
observations at a regional level are critical as approaches that sample the 
landscape often omit changes in forest cover because of their restricted extent 
(e.g., along road networks or the borders between lowlands and uplands). In 
all cases, the combination of optical and SAR data provides enhanced ben­
efits for forest monitoring and also understanding the processes of change. 

15.4 Processes of Forest Change 

Changes in forest cover are typically associated with specific events 
(e.g., clearcutting), long-term degradation, natural succession, or human-
induced regeneration following clearance or disturbance. In each case, SAR 
can play a role in mapping and monitoring change and also estimating the 
magnitude of changes in structure and AGB, as outlined in the following 
sections. 

15.4.1 Deforestation 

Deforestation is defined as a conversion of forest to nonforest. However, 
establishing the boundary between forests and nonforest or the magnitude 
of change that constitutes a deforestation event is often compromised by fac­
tors including the nature of forest loss in terms of structural components  
removed and the methods of clearing. Using SAR data, such definitions are 
compromised by prevailing climatic (e.g., rainfall, freeze–thaw cycles) and 
background conditions (e.g., surface roughness, soil water-holding capacity). 

Deforestation is ordinarily associated with complete removal of woody veg­
etation and hence a change in the dominance of volume and double-bounce 
scattering to surface scattering. However, in some cases, cut stumps, fallen 
woody material, and individual trees (e.g., palms, nonproductive timbers) 
are often remaining following clearance events. In the tropics and at L-band, 
an increase in the backscattering coefficient at HH polarization is typically  
observed because of double-bounce interactions with woody debris (slash; 
Almeida-Filho et al. 2009), which can be greater than that of the original forest, 
as shown in the example from Riau Province in Indonesia (Figure  15.2a). 
However, this is typically followed by a rapid decline because of loss of woody 
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a b 

c d 

e f 

FIGURE 15.2 
For a site in Riau Province, Indonesia, ALOS PALSAR image highlighting the difference 

between forest and nonforest at (a) HH polarization and (b) HV polarization. For a tropical 

rainforest site in Guyana, open gold mining is less evident within Cosmo-SkyMed X-band 

(c) HH polarization data compared to (d) (See color insert.) a composite of  HH data from 

two dates (September 12 and 15, 2011) and coherence (in RGB respectively; blue areas indicate 

deforested areas). Due to double-bounce scattering between tree stems and the water surface 

at L-band, inundated forest in the Central Amazon Basin is clearly  visible (bright) at (e) HH 

polarization, while barely visible at (f) HV polarization. 
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debris such that deforested areas often become indistinguishable for a short 
period because of similarity in backscatter with adjacent forest. Over time,  
however, these become more separable, exhibiting a lower backscatter than 
primary forest because of the dominance of specular scattering. In some cases, 
woody material can be piled into rows, which leads to a high backscatter at 
HH polarization. Trees can also be left standing and exhibit a high return at 
L-band HH but a lower return if observed using, for example, C-band SAR or 
optical data (Lucas et al. 2008). Areas of open ground may also exhibit a similar 
backscatter as areas with dead standing trees. For detecting deforested areas, 
greater contrast with undisturbed forests is generally obtained at L-band at 
HV polarization (Figure 15.2b). However, the distinction between forest and 
nonforest is often compromised using higher frequency (C-band/X-band) SAR 
single-polarization data because of similarities in backscatter with herbaceous 
vegetation (e.g., pastures). Differences are greater where interferometric coher­
ence data are used, as illustrated in the X-band example in Figure 15.2c and d, 
allowing detection of the deforested area (appearing blue in Figure 15.2d). The 
environmental conditions prevailing at the time of the SAR image acquisition 
also have implications for mapping and monitoring the extent of forest cover. 
For example, a reduction in SAR backscatter may occur as a consequence of 
thawing or snowmelt, reductions in precipitation, or lowering/raising of the 
water level beneath a forest canopy. In the latter case, the signature can be sim­
ilar to recently cleared forest, and hence misinterpretations may occur when 
mapping deforested areas (Figure 15.2e and f). 

Methods for defining the forest/nonforest boundary have ranged from 
simple thresholding to more complex classifications, but, in each case, com­
promises have been necessary or errors are introduced for the reasons men­
tioned above. However, the decision as to what constitutes the boundary 
has significant implications for countries reporting on the extent of forest 
cover and hence the detection of change. An alternative option is to retrieve 
biophysical attributes of forests (e.g., area, height, and cover) that are used 
in standard definitions of forest cover and can be more easily interpreted,  
although this has rarely been undertaken to date. 

15.4.2  Forest Degradation and Natural Disturbances 

Forest degradation typically involves the removal of individuals or groups of 
trees through processes such as selective logging and fuel wood collection as 
well as dieback as a consequence of, for example, burning or drought. Typically, 
degradation results in a loss of trees and hence canopy material, with a corre­
sponding reduction in backscattering coefficient and a change in texture typi­
cally evident within the SAR image depending on frequency and polarization. 

Many studies have highlighted how forest degradation can be observed 
from SAR data. One example is in the peat swamp forests of Indonesia 
where drainage of the central dome contributed to underground peat fires, 
which eventually led to the collapse of the forest. This sequence of events was 
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captured in a time series of JERS-1 SAR data acquired between 1995 and 1998 
(Figure 15.3). Until 1996, the dome was still hydrologically intact, but the 
construction of a very wide canal through the dome was visible in the JERS-1 
SAR image of 1997. In the third image of the sequence (September 1997), the 
canal was filled with water leading to specular scattering away from the sen­
sor and hence its black appearance in the image. A small but bright area is 
also evident, which then grew in area, becoming brighter until the collapse 
of the forest, as observed in January 1998. For many peat swamp areas in 
Borneo and Sumatra, large series of historical JERS-1 images collected during 
the period 1992–1998 (as many as 30 scenes) and ALOS PALSAR data from 
2007 to 2010 show evidence of degradation of the peat swamp forests. The 
sequence illustrated highlights the benefits of using time series of SAR data 
from L-band, although data from other sensors can also indicate degradation. 

From single-date SAR imagery, selective logging is often difficult to discern 
because of the relatively coarse spatial resolution, although multitemporal 
datasets can be used to better identify such areas. SAR coherence measure­
ments can also indicate disturbance. As examples, interferometric ERS-2 
SAR data have been used to detect losses of canopy in Kalimantan following 
large wildfires, while ALOS PALSAR coherence data have proved useful for 
detecting the impacts of severe fires in Victorian forests in Australia in 2009. 
These data also have the potential for detecting natural disturbances associ­
ated with, for example, downdrafts and lightning strikes as well as long-term 
declines in the condition of forests as a consequence of drought or flooding. 

15.4.3  Secondary Forests and Woody Thickening 

Secondary forests often establish following deforestation or degradation 
while in some intact forests, thickening of the vegetation may occur as a 
consequence of rainforest expansion or lack of burning over long time  
periods. A limitation of using SAR data, particularly in tropical regions, is 
that the rapid increase in woody material renders them indistinguishable 
from primary forest within a few years. Therefore, most information relat­
ing to different stages of regrowth is gathered in the early years of regrowth. 

Where forests regenerate on land used previously for agriculture or clear 
felled of trees, these can be identified through time-series comparison of 
SAR data, although the point at which regrowing woody vegetation can be 
considered to be forest can be contentious. Temporal datasets can, however, 
be used to track the progression of regrowth as the SAR backscatter typically 
increases over time up to the level of saturation. As an example, the recovery 
of mangroves in Perak, Malaysia, that had been cleared in rotation can be 
readily detected using time series of JERS-1 SAR and ALOS PALSAR data 
through changes in backscattering coefficient. Time-series comparisons of 
remote sensing data classifications assume that forests of the same age are 
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FIGURE 15.3 
The collapse of a forest on top of a peat dome in Central Kalimantan, Indonesia, as observed 

using time series of JERS-1 SAR data acquired on (a) July 12, 1995, (b) March 19, 1997, 

(c)  September 11, 1997, (d) October 25, 1997, and (e) January 21, 1998. The image width is 

~21 km. 
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similar in terms of their structure, species composition, and biomass. SAR 
data can, however, be used to differentiate forests that are of similar age but 
may differ in terms of their structure or accumulated AGB. 

The use of multifrequency SAR and optical data provides unique opportu­
nities to map the extent of regrowth and differentiate growth stages based on 
structural development rather than age. At C-band, early stages of regrowth 
are often indistinguishable from herbaceous vegetation while at L-band 
and particularly at P-band, these may be unable to be distinguished from 
nonforested areas as the stem size and density may be insufficient to evoke 
a response. Forests at more advanced stages of growth are, however, able to 
be detected. Hence, the use of X- and/or C-band or optical data to establish 
the presence of plant material and lower frequency L- and P-band SAR to 
determine whether woody components exist and their relative sizes are 
useful for determining the nature of regrowth as a function of its structural 
development. Applying thresholds to SAR data to discriminate regrowth 
forests from nonforest is often problematic because of confusion with other 
land and water surfaces and hence the application of thresholds to layers 
representing retrieved biophysical attributes (e.g., AGB retrieved from SAR 
data) may be more appropriate. 

15.5 Forest  Monitoring 

15.5.1 Overview 

Using SAR data, a large amount of information on the extent and nature 
of deforestation and degradation associated with human activities,  natural 
disturbances through specific events and long-term processes, and the 
patterns and dynamics of regrowth can be quantified. Such knowledge can 
be used to inform subsequent use of the land, in planning for conservation 
and sustainable management of the existing forest area, and for restoring 
forests on land that had been previously cleared or degraded. In many cases, 
forested landscapes have been classified into thematic categories (forest, 
nonforest, regrowth stages, logged forest), with thresholds or specific algo­
rithms used. Forests can, however, be described on the basis of retrieved 
biophysical attributes (e.g., height from interferometric SAR or AGB obtained 
from lower frequency SAR), with continuous surfaces produced which are 
subsequently subdivided according to predefined intervals. Nevertheless, 
complications in the description, mapping, and monitoring of change have 
arisen from variations in environmental conditions (e.g., surface moisture). 
The following sections provide several case studies from boreal and tropical 
forests as well as wooded savannas in which SAR data have been used for 
monitoring forests at local to regional levels and demonstrate how some of 
the issues presented above have been addressed. 
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15.5.2  Xingu Watershed, Mato Grosso, Brazil 

The Xingu watershed headwaters in southeastern Brazil is representative of 
many areas along the Amazon’s “arc of deforestation.” The native vegetation 
within the 387,000 km2 of the headwaters includes tall evergreen (25–45 m) 
and transitional semideciduous (10–30 m) and riparian forests as well as 
savannas, with these encompassing cerrado woodland, grassland mosaics, 
thickets, and gallery forest. In the late 2000s, the headwaters contained more 
area in dense humid forest (~221,000 km2) than 90% of the world’s tropical 
nations. However, annual deforestation in the forest biome from 2000 to 2007 
ranged between 649 km and 3,170 km2, with an average annual rate over the 
7-year period of 1951 km2. This represents between 5% and 13% of all defor­
estation in the Brazilian Amazon (Stickler et al. 2008). 

Using a mosaic of ALOS PALSAR data generated using spatially and tem­
porally consistent images acquired during the period June to August 2007 
(Figure 15.4a), areas of forest and nonforest (Figure 15.4b) were differentiated 
by applying a random forest algorithm to objects generated using eCognition 
and aggregating classes at several levels (Walker et al. 2010). This resulted 
in an accuracy of 92.4% when ancillary spatial/topographic predictor vari­
ables were included. A similar approach applied to a Landsat sensor mosaic 
(Figure 15.4c), comprised of data acquired over the same timeframe, resulted 
in an accuracy of 94.8%. The overall agreement between the PALSAR and 
Landsat-based forest cover products varied from 89.7% (1 pixel window) to 
93.8% (11 pixel window), with minor discrepancies in some class boundar­
ies (e.g., in the agreement of forests/field edges) being the primary source of 
spatial dissimilarity between the maps. 

The observation strategy developed for the ALOS PALSAR allowed the 
generation of both dual and single polarimetric data mosaics from quasi-
identical periods between 2007 and 2009. Change detected through compar­
isons of backscatter included clearcutting, logging, and wildfires. For the 
detection of change, the use of objects rather than pixels was preferred, as 
management activities or natural degradation typically occurred in areas 
larger than single pixels. Furthermore, the reduction in image speckle 
associated with averaging pixels within objects increased signal stability. 
Change gradients, based on regression tree approaches (e.g., random forest 
or support vector machines), were preferred over simple comparisons of 
forest cover maps at several time steps, because of reductions in errors. 

A composite of HV data acquired in 2007, 2008, and 2009 over the Xingu 
watershed is shown in Figure 15.5. Forests clearcuts with slash removed 
between the 2007 and 2008 acquisitions appear in bright red because of sig­
nificantly lower backscatter from clearcut areas (darker green and blue tones 
due after logging). Areas with the same treatment imposed between the 2008 
and 2009 acquisitions appear in bright yellow. Other land covers include 
lower biomass cerrado with no significant change (medium gray), grassland, 
and bare soil (dark gray to black). Agricultural fields are generally darker, 
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FIGURE 15.4 
(See color insert.) Satellite image mosaics produced for the Xingu River headwaters region. 

(a) ALOS PALSAR mosaic consisting of 116 individual Level 1.1 (single-look complex) fine 

beam, dual-polarimetric scenes (R/G/B = polarizations HH/HV/HH-HV difference). (b) Map 

of forest (green) and nonforest (beige) generated with an overall classification accuracy of 

92.4% ± 1.8%. (c) Landsat 5 mosaic consisting of 12 individual Level 1G (Geocover) scenes

 (R/G/B = bands 5/4/3). 

with the variability in backscatter associated with changes in crop phenol­
ogy and also surface (soil and vegetation) moisture. While algorithms for 
change detection can be based on general principals of change, several ambi­
guities need to be taken into account when mapping change. In particular, 
moisture changes from rain events can enhance the backscatter signal but are 
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FIGURE 15.5 
(See color insert.) Multitemporal ALOS PALSAR L-band HV image generated from data 

acquired in 2007 (red), 2008 (green), and 2009 (blue) for a part of the Xingu watershed. Closed 

forest (white) is interspersed with fire scars (red tones) along the main stem of the Xingu River 

and tributaries (black). 

often readily identified at a swath scale and bias corrections can sometimes 
be applied in mosaic generation. In general, backscatter levels of standing 
(primary) forest are around –7 to –9 dB in HH and –13 to –15 dB in HV, and 
losses in AGB associated with logging, clearcutting, or fire reduce the ALOS 
PALSAR backscatter by 5–7 dB. Smaller changes are mostly related to agri­
cultural activities and changes in both phenology and surface moisture. 

15.5.3  Detecting Forest Degradation in Borneo 

Borneo is the third largest island in the world and covers an area of approxi­
mately 750,000 km2. Almost three quarters of the island is part of Indonesia 
(Kalimantan) while Sarawak and Sabah are territories of Malaysia, and 
the Sultanate of Brunei Darussalam occupies a small area. Until the 1950s, 
Borneo was almost entirely covered by tropical evergreen broadleaved 
forest, with other major natural vegetation covers including peat swamp 
forests along the coastal and subcoastal lowlands, freshwater swamps along 
the inland rivers, and mangrove forests on the coastal plains. However, 
intensive logging of predominantly commercial dipterocarp species and 
conversion to cropland, oil palm, and timber plantations have reduced 
forest cover significantly. 

The establishment of baseline maps of forest cover and type against which 
to quantify and determine the nature and impact of change is essential. Using 
ALOS PALSAR fine beam single (FBS) and dual (FBD) polarization  (path) 
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image pairs acquired in 2007, a map of forest and land cover types was gener­
ated (18 classes in total). These maps have been used subsequently to assist 
government agencies in their spatial planning and reporting on the status of 
the environment, thereby allowing compliance with international environ­
mental treaties (Hoekman et al. 2010). Furthermore, maps were generated  
annually using data acquired in 2008 and 2009, with these highlighting areas 
of forest degradation through selective logging (Figure 15.6). 

a b 

c 

FIGURE 15.6 
(See color insert.) Forest degradation in Sarawak through selective  logging observed through 

comparison of forest maps generated using ALOS PALSAR data for the years (a–c) 2007 

through to 2009. 
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15.5.4 Rapid Detection of Deforestation by ScanSAR 

Using optical imagery, deforestation in the Brazilian Amazon is moni­
tored and reported on an annual basis by the Brazilian Institute of Space 
Research (INPE). The majority of data is acquired during the dry season 
(July to October), although smoke haze and cloud reduce acquisition rates 
as this season progresses and during the wet season. While INPE provides 
deforestation alerts every 15 days, the Brazilian Institute for Environment 
and Natural Renewable Resources (IBAMA) is charged with implementing 
measures that prevent deforestation before it occurs. For this purpose, the 
Japan Aerospace Exploration Agency (JAXA) operated the ScanSAR routinely 
over Brazil every 3 days and provided the processed ScanSAR images to the 
IBAMA within 5 days from the acquisition date. Provided with information 
on deforestation events from IBAMA’s Remote Sensing Centre, environmen­
tal law enforcement agents visit affected sites through ground or helicopter 
transportation. The imagery also assists the agents to define the logistics and 
strategies for subsequent field actions. While optical imagery is used, the 
wide-swath ScanSAR mode of the ALOS PALSAR has allowed detection of 
early deforestation. Each area identified as indicating a change is delineated 
within the image and the area is classified as being in the initial processes of 
deforestation or is a consequence of ongoing clearcutting of the forest. The 
information is assembled into a deforestation indication document enabling 
the law enforcement agents to respond rapidly to deforestation events, with 
particular focus on halting those that are illegal. 

15.5.5  Change Detection in Boreal Forests 

Boreal forests are extensive throughout the northern hemisphere and are 
located primarily in Siberia and North America. The SIBERIA project aimed 
to generate baseline maps of boreal forest cover across Siberia by using a  
combination of ERS-1 and ERS-2 SAR tandem coherence data and JERS-1 
SAR backscatter data for 1997 to 1998. Mapping of forest cover was informed 
by relationships established between growing stock volume and both C-band 
coherence and L-band backscatter. The classification was undertaken using 
a maximum likelihood algorithm based on class statistics generated from 
training data. 

Within the boreal zone, the ability to detect change depends upon the 
timing of observation. During the winter months, extensive snow cover 
and frozen conditions limit detection of forest cover using backscatter data. 
However, using interferometric pairs of ALOS PALSAR data, Thiel et al. 
(2009) established that temporal decorrelation was low during the winter 
months, and areas of forest and nonforest could be separated using a combi­
nation of winter-coherence data and PALSAR summer backscattered intensi­
ties. Operational delineation of forest cover was suggested, with accuracies 
exceeding 90% when an object-based classification was applied. 
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15.5.6  Quantifying Regrowth Dynamics in Amazonia and Australia 

Australia supports a diversity of vegetation, with the greatest expanse asso­
ciated with sparse to open tree−grass savannas. Temperature, sub-tropical, 
and tropical closed forests occur towards the coast and often at higher eleva­
tions. Within Queensland, Australia, vegetation monitoring is undertaken 
through the Statewide Landcover And Trees Study (SLATS) (Danaher et al. 
2010) and primarily using time series of Landsat sensor data. The extent of 
woody vegetation is mapped on an annual basis using Landsat-derived foli­
age projective cover (FPC). The type and ecological importance of vegeta­
tion cleared is determined by intersecting mapped areas of deforestation 
with regional ecosystem (RE) mapping of vegetation types. Through this 
approach, changes in vegetation cover are tracked and ameliorative mea­
sures taken where appropriate. 

While SAR data have not yet been used for operational monitoring in 
Queensland, potential exists for refining maps of woody vegetation and forest 
growth stage, thereby increasing the reliability of estimates of deforestation 
and regenerating forest areas. For example, confusion between herbaceous 
and woody vegetation occurring within Landsat sensor data is largely over­
come by integrating ALOS PALSAR data because of the lack of interaction 
with the former although confusion with rough ground can occur, particu­
larly with increasing amounts of surface moisture. Integration of the ALOS 
PALSAR with Landsat FPC data also allows the detection of the early stages 
of woody regrowth, which typically exhibit an FPC  equivalent to  forest 
(i.e., >12%, equivalent to a canopy cover of 20%) but an L-band backscatter 
more  characteristic of nonforest (Lucas et al. 2006). Using such an approach, 
the dynamics of regrowth can be tracked, including the progression of 
regrowth through different stages. 

15.5.7 Wider Use and Future Sensors 

The studies outlined above have highlighted the benefits of using SAR data 
for monitoring deforestation, degradation, regrowth dynamics, and natural 
disturbances. In each case, the benefits for better understanding the cycling 
of carbon through landscapes, conserving biodiversity, and contributing to a 
range of national policy and international conventions are evident. However, in 
many cases, such datasets have not been effectively exploited nor recognized. 

In the future, a number of SARs are planned, which are anticipated to pro­
vide significant advances in forest characterization, mapping, and monitor­
ing at a global scale. These include the European Space Agency (ESA) Sentinel 
satellites, which are anticipated to provide interferometric and polarimetric 
observations at C-band (two satellites). The ALOS-2 and the Argentinian 
SAOCOM satellites are expected to provide L-band SAR observations while 
the ESA BIOMASS mission will be the first to provide P-band observations, 
specifically for the retrieval of forest biomass. The NASA DESDynI mission 
is also intended to provide a dedicated L-band SAR. The challenge will be 
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the full integration of data from these sensors into forest monitoring sys­
tems and the use of data acquired in different modes and following different 
acquisition strategies. 

15.6 Conclusions 

While optical remote sensing data are the workhorse of many forest 
monitoring systems, SAR are able to acquire data regardless of clouds and 
haze, and are increasingly providing opportunities to uniquely detect defor­
estation activity as well as degradation and regeneration in a consistent and 
repetitive manner. These data can also inform on the conditions imposed 
through clearance operations or during subsequent use of the land. 

The benefits of providing routine and consistent observations have been 
demonstrated through the JERS-1 SAR and ALOS PALSAR and while the 
archives only span over limited number of years, comparison of these data 
has allowed long-term trends in the amount and type of woody vegetation to 
be quantified in some cases. 

While the relative benefits of SAR and optical data have been debated in 
the remote sensing community for some time, the integration of these data-
sets provides the greatest potential for monitoring systems. In particular, 
SAR data can fill in gaps where cloud cover or smoke haze prevents observa­
tions from optical sensor data (for periods covering several years) or can be 
integrated to provide better mapping of, for example, regeneration stages. 

The increasing diversity of observation modes is expected to enhance the 
use of SAR into the future. The continued and future provision of global 
single, dual, and fully polarimetric data at X-, C-, and L-bands and inter­
ferometric capability together with a greater understanding of the informa­
tion content of these data is anticipated to lead to increased use of SAR in 
many forest monitoring activities across a range of biomes and scales. The 
key challenge is to optimize the development and use of these data such that 
they ultimately contribute to not only halting the relentless loss of forest but 
also restoration through better understanding of the dynamics of the forest 
ecosystems in response to human activities. 
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16.1 Introduction 

Satellites in polar orbits, like Landsat, image the entire planet’s surface 
every day or every couple of weeks, depending on the swath of the satellite 
overpass; images with detailed spatial measurements (1–30 m) are  usually 
only available once or twice a month—for example Landsat 5 and 7 (image 
every 16 days at 30 m resolution)—while coarser resolution imagery (e.g., 
the MODIS sensor on Terra at 250 m or the SPOT satellites’ Vegetation 
sensor at 1  km) are provided nearly daily. Because the  information is 
captured  digitally, computers can be used to process, store, analyze, and 
distribute the data in a systematic manner. And because the same sensor on 
the same platform is gathering images for all points on the planet’s surface, 
these measurements are globally consistent and independent—a  synoptic 
record of earth observations ready-made for monitoring, reporting, and 
verification systems linked to multilateral environmental agreements as 
well as individual government policies. 

Forty years ago, the United States of America was the only source of earth 
observation imagery—today there are more than 25 space-faring nations 
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FIGURE 16.1 
Polar orbiting satellites with imaging capability launched since 1972. The horizontal bars show 

period of operation. 
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flying imaging systems. In 1972, Landsat 1 was the only civilian satellite 
capable of imaging Earth at a level of spatial detail appropriate for measur­
ing any sort of quantitative changes in forests; today there are more than 
60 satellites flying that can provide suitable imagery (or at least they could, if 
they had a suitable data acquisition, archiving, processing, access, and distri­
bution policy). Figure 16.1 lists the polar orbiting imaging satellites, in chron­
ological order according to launch date and shows period of operation. Earth 
observations from space are becoming more widely employed and increas­
ingly sophisticated. The latest systems launched, such as the Franco−Italian 
Pleiades system (the first of which was launched December 17, 2011), combine 
very high spatial resolution (70 cm) with a highly maneuverable platform, 
capable of providing an image of any point on the surface (cloud cover per­
mitting) within a 24 h period. Concurrent to these technological advances 
is an increasing appropriation of the land surface in the production of food, 
fiber, and fuel at the global scale. Forests in particular are under increasing 
pressure from humankind. Earth observations are critical in assessing and 
balancing the immediate economic drivers of forest change with the equally 
important, but less appreciated ecosystem services forests provide. 

The previous chapters of this compilation show that recent developments 
in regional to global monitoring of forests from earth observations have prof­
ited immensely from changes made to data policies and access (Woodcock 
et al. 2008). We now have an unbroken record of global observations stretch­
ing back over four decades, all freely available. This chapter provides some 
perspectives on future earth observation technology for monitoring forests 
at the global scale. 

16.2  Future Earth Observation Technology 

Monitoring forest areas over anything greater than local or regional scales 
would be a major challenge without the use of satellite imagery, in particular 
for large and remote regions. Satellite remote sensing combined with a set of 
ground measurements for verification plays a key role in determining rates 
of forest cover loss and gain. Technical capabilities and statistical tools have 
advanced since the early 1990s, and operational forest monitoring systems 
at the national level are now a feasible goal for most countries of the world. 

The use of medium spatial resolution satellite imagery for historical 
assessment of deforestation has been boosted by changes to the policy 
determining access and distribution of data from the U.S. Landsat archive. 
In December 2008, the U.S. government released the entire Landsat archive 
at no charge (Woodcock et al. 2008). This open access data policy means that 
anyone interested in global forest monitoring now has access to an archive of 
data spanning four decades. Current plans for the Landsat Data Continuity 
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Mission (LDCM), with a launch scheduled for early 2013, and the European 
Sentinel-2 mission (Martimort et al. 2007), with a launch date of mid-2014,  
will both adopt global data acquisition strategies and will both (at least at the 
time of writing) provide free and open access to acquired imagery. 

LDCM, to be christened Landsat 8 upon reaching orbit, will have a swath 
width of 185 km and feature a 15 m spatial resolution panchromatic band, nine 
30 m multispectral bands (six of which will correspond to heritage Landsat 
bandwidths), and two 120 m thermal bands. The 16-day revisit rate will match 
that of past Landsat sensors but with an increased acquisition rate of at least 
400 images per 24 h period. The open and free data policy will continue. 

The Sentinel-2 satellite will have a swath width of 290 km and carry 
onboard a multispectral sensor having four bands with a spatial resolution of 
10 m, five bands at 20 m, and three bands at 60 m. The Sentinel-2 mission com­
prises two identical satellites (the second has a tentative launch date for 2015) 
in identical orbits, but spaced 180° apart. This mission configuration gives 
a revisit time of 10 days for one satellite and 5 days when both satellites are 
operational. The Sentinel-2 mission will include a systematic  acquisition plan 
of satellite imagery over all terrestrial land areas of the world between –56° 
and +83° latitude. The envisaged data policy will allow full and open access 
to Sentinel-2 data, aiming for maximum availability of earth observation data 
in support of environmental and climate change policy implementation. 

In the near future, the practical utility of radar data is also expected to 
be enhanced from better data access, processing, and scientific advances. 
In particular, future space missions will provide complementary Synthetic 
Aperture Radar (SAR) imagery systems for the monitoring of forest area and 
biomass. The Sentinel-1 mission (Attema et al. 2007) is a pair of two C-band 
SAR sensors, the first is planned for launch in 2013 to be followed by a second 
satellite a few years later. This system is designed to provide biweekly global 
coverage of radar data at a fine spatial resolution (10 m × 10 m) with a revisit 
time of 6 days (a swath width of 240 km). 

The finer spatial resolution of data from the Sentinel satellites (from 
10 m × 10 m) can be expected to allow for more precise forest area estimates 
and canopy cover assessments, and therefore more reliable  statistical 
information on forest area change, in particular for estimating forest 
degradation and forest regrowth. 

16.3 Perspectives 

The basic fact is that natural resources, such as natural forests, are becom­
ing increasingly scarce. There is considerably more pressure on our natural 
resource base, and establishing a balanced use of forest resources is required. 
Do you use a forest as a carbon sink? Do you use it as a protected area for 
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biodiversity? Or do you use it for fuel wood or agroindustrial development? 
To make sensible decisions on the trade-offs between different uses, infor­
mation on where different forest resources are, what condition they are in, 
and how they are changing is required. In the framework of the UNFCCC 
REDD+ activities, the extension of the analysis of tropical deforestation to 
degradation and forest regrowth will be a crucial requirement (Asner et al. 
2009). There are also strong incentives to reduce uncertainty in the estima­
tion of carbon fluxes arising from deforestation by using better data on forest 
aboveground biomass or carbon stocks (Saatchi et al. 2011, Baccini et al. 2012) 
in combination with improved satellite-derived estimates of deforestation 
(Harris et al. 2012). 

Mature forest monitoring methods need to be ported to operational set­
tings. Monitoring systems such as Brazil’s PRODES deforestation map­
ping program need to be replicated in other countries where results can be 
directly incorporated into policy and governance settings. Effective technol­
ogy transfer of mature, proven methods to developing world institutions 
needs to be advocated and implemented. This can be envisaged as a leap­
frog technology where agencies with little or no past technical capacity may 
advance in one step to the state of the art. 

Researchers will be responsible for developing new capabilities by test­
ing new data sets, processing methods, and thematic outputs. Future satel­
lite image technology, including radar and optical imagery at finer spatial 
resolutions (10 m finer) and higher temporal frequencies, will require both 
improved scientific approaches, but also advanced processing systems, 
including cloud-computing environments (Nemani 2011). The ongoing 
methodological advances will narrow the gap between the demand for more 
accurate estimation of the global carbon budget and the limitations of cur­
rent monitoring approaches. 

The adoption of progressive data policies, such as those of NASA, USGS, 
ESA, and INPE, should be promoted. International coordination between 
space agencies and implementing institutions (e.g., through the Committee on 
Earth Observation Satellites—CEOS—or the Group on Earth Observations— 
GEO) is key to this prospect. Such international cooperation will ensure 
repeated coverage of the world’s forests with varying observation types, all 
with easy access at low or no cost (GEO 2010). Progress will be measured by 
how quickly the methods reported here are made obsolete. 
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degradation 

Brazilian Amazon, 173–174 
degraded forests, 174–177 
ecological impacts, 177–178 

Fine spatial resolution imagery, 52 
Fire 

ecological monitoring processes, 7 
forest, 172 
monitoring 

LANDFIRE, 217–218 
trends in burn severity, 216–217 

Fire Information for Resource 
Management System 
(FIRMS), 248–249 

FIRMS, see Fire Information for 
Resource Management 
System (FIRMS) 

Food and Agriculture Organization 
(FAO), 129 

Forest(s) 
ecosystem services 

distal, 9 
downstream, 8–9 
proximal, 8 

fires, 172 
fragmentation, 172 
global carbon cycle, 16 
inventories, 19–20 
as land use, 118–119 
monitoring processes 

ecological processes, 6–7 
land use processes, 4–6 
managing capability, 10 

normalization, 116 
Forest cover change, synthetic 

aperture radar 
deforestation, 281–283 
natural disturbances, 283–285 
secondary forests, 284, 286 

Forest cover conversion 
C-CAP, 219 
NLCD, 218–219 
Trends dataset, 218 

Forest cover loss 
definition of, 95–96 
global assessment of, 95 
MODIS-indicated vs. gross, 

100–101 
Forest cover loss monitoring 

in DRC, 142–145 
in European Russia, 139–142 

Forest cover monitoring, 41–42 
Forest degradation 

in Borneo, 289–290 
carbon emissions from land use 

change, 24 
definition, 145, 171 
field characterization 

Brazilian Amazon, 173–174 
degraded forests, 174–177 
ecological impacts, 177–178 

global-scale monitoring, 145–148 
land use transition, 5 
national-scale monitoring, 

145–148 
and natural disturbances, 283–285 
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Forest degradation (Continued) 
reducing emissions from 

deforestation and 
degradation, 171–172 

remote sensing 
classification, 185–188 
mapping selective logging, 179–185 

Forest disturbance 
Landsat Ecosystem Disturbance 

Adaptive Processing System, 
213–216 

North American Forest Dynamics, 
214–216 

Forest dynamics 
conversion of forest cover
 

C-CAP, 219
 
NLCD, 218–219
 
Trends dataset, 218
 

ecological impacts of climate 

change, 223–224
 

fire monitoring
 
LANDFIRE, 217–218
 
monitoring trends in burn
 

severity, 216–217 
forest disturbance
 

LEDAPS, 213–216
 
NAFD, 214–216
 

in global context, 211–213 
hyper-temporal and near real-time 

change detection, 222–223 
Landsat with biomass, 223 
operational monitoring, 221–222 
synthesis of, 220–221 

Forest extent and change analysis 
geographic stratification, 235 
multitemporal model, 236–237 
training and validation data, 

235–236 
Forest Fire Monitoring Information 

System (FFMIS), 51, 247–249 
Forest Inventory and Analysis (FIA), 

50, 212, 221 
Forest Resources Assessment (FRA), 44, 

67, 75–80, 83–84, 112 
Forest Survey of India (FSI), 49 
FRA, see Forest Resources Assessment 

(FRA) 
Franco-Italian Pleiades system, 40–41 
FSI, see Forest Survey of India (FSI) 

G 

GeoCover, 43, 57, 146 
Generalized regression estimator 

(GRE), 73 
Geographic stratification, 235 
Global carbon cycle 

definition, 17 
in forests, 16 

Global forest cover loss mapping, 94–96 
Global forest cover mapping, 94 
Global Land Survey (GLS), 42, 114 
Global-scale forest degradation 

monitoring, 145–148 
Global systematic sample, 113–114 
Global Visualization (GloVis) Viewer, 61 
GLS, see Global Land Survey (GLS) 
GoogleEarth, 138 
GRE, see Generalized regression 

estimator (GRE) 
Gross forest cover loss 

annual rate of, 125 
vs. MODIS-indicated forest cover 

loss, 100–101 

H 

Horvitz–Thompson estimator, 
72–73, 124 

Hot spots 
attributes, 249 
generation of, 250 
polygon, 250 
retrieval of, 250 

HRBA product 
burned area distribution, 263 
burned area polygons, 261 
correlation, 264–265 
description of, 248 
Landsat sensor, 259–261 

I 

IFL, see Intact forest landscape (IFL) 
Image calibration, 233–234 
Image segmentation, 117 

thresholds, 160 
Image time series analysis, 136–137 
Inclusion probability, 70 
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Indirect anthropogenic effects, 24 
Indirect effect of deforestation, 24 
Inference 

definition of, 71
 
design-based inference, 71–72
 
model-based inference, 71–72
 

INPE,  see Brazilian National Space 
Agency (INPE) 

Intact forest landscape (IFL), 145–148 
Integrated burned area assessment,  

261–262 
Interferometry, 276 
Interpretation accuracy, 52 

J 

Japan Aerospace Exploration Agency  
(JAXA), 291 

JAXA,  see Japan Aerospace Exploration 
Agency (JAXA) 

K 

k-nearest-neighbor (k-NN) classifier, 202 
Kyoto Protocol, 230 

L 

Land cover 
categories, 118 
definition of, 118 
mapping conversion, 121–122 
transition matrix, 122–123 
visual control and refinement,  

120–121 
Land cover change, 21 
LANDFIRE, 217–218, 222 
Landsat 

data access, 61
 
data description, 58–61
 
data geometric rectification,
  

232–233 
satellite imagery, 113 

Landsat 1, 40–41 
Landsat data processing 

automated, 134 
data pool observations, 136–138 
image processing and 

resampling, 134 

image time series analysis, 136–137 
MODIS normalization, 136 
multi-temporal metrics, 137–138 
quality assessment, 132, 134–135 
time-sequential image 

composites, 137 
top-of-atmosphere (TOA) 

reflectance, 134, 136 
Landsat-derived texture 

measures, 234 
Landsat Ecosystem Disturbance 

Adaptive Processing System 
(LEDAPS), 213–216 

Landsat Product Generation System 
(LPGS), 59 

Landsat satellite imagery, 113 
Landscape Change Monitoring System 

(LCMS), 221–222 
Land use 

categories, 118 
definition, 21, 118 
forest, 118–119 
mapping conversion, 121–122 
monitoring processes, 4–6 

Land use and land cover change 
(LULCC) 

carbon density, 22–23 
carbon emissions from, 23–24 
definition of, 21 
sources and sinks of carbon, 24–26 

Land use change 
boreal zone forests, 25–26 
temperate zone forests, 25–26 
tropical forests, 25 

LCMS, see Landscape Change 
Monitoring System (LCMS) 

LEDAPS, see Landsat Ecosystem 
Disturbance Adaptive 
Processing System (LEDAPS) 

Linear spectral mixture model 
(LSMM), 160 

Local variance estimation, 124 
Logged forests, 175 
LPGS, see Landsat Product Generation 

System (LPGS) 
LSMM, see Linear spectral mixture 

model (LSMM) 
LULCC, see Land use and land cover 

change (LULCC) 
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M 

Managing logging (ML) forest, 175 
Manual mapping products, 238 
Mapping selective logging 

goals, 179
 
remote sensing and GIS with, 


182–183 
spectral mixture analysis, 183–185 
visual interpretation method, 

179, 182 
Mature forest monitoring methods, 303 
Measurement bias, 85 
Measurement error 

bias, 85 
variability, 86 

Measurement variability, 86 
Metrics 

MODIS, 96
 
multi-temporal, 137–138
 

Model-assisted estimators, see 
Generalized regression 
estimator (GRE) 

Model-based inference, 71–72 
Moderate resolution imaging 

spectroradiometer (MODIS) 
vs. advanced very high resolution 

radiometer, 93 
bagging procedure, 97 
commission errors, 105 
data access, 61 
data description, 58 
decision tree algorithm, 96–97 
global forest change, 94, 106 
global forest cover loss mapping, 

94–96 
global forest cover mapping, 94 
metrics, 96 
nested approach, 48–49 
wall-to-wall coverage analysis, 

49–51 
MODIS, see Moderate resolution 

imaging spectroradiometer 
(MODIS) 

MODIS-indicated forest cover loss 
biome scale, 104 
continental scale, 104 
global distribution of, 101–103 
vs. gross forest cover loss, 100–101 

MODIS sensor 
burned area mapping 

detection of AFBA product, 249–251 
detection of SBRA product, 252–259 

global land mapping and 
monitoring capabilities, 93–94 

Monitoring trends in burn severity  
(MTBS), 216–217 

MTBS,  see Monitoring trends in burn  
severity (MTBS) 

Multi-date segmentation, 117 
Multi-temporal classifications, 120–121,  

202 
land cover approach, 236–237 

Multi-temporal metrics, 137–138 

N 

NACP,  see North American Carbon 
Program (NACP) 

NAFD,  see North American Forest 
Dynamics (NAFD) 

National Carbon Accounting System  
(NCAS), 50, 230 

National Carbon Accounting System-
Land Cover Change Program 
(NCAS-LCCP), 50–51, 230, 232 

National Forest Inventories (NFIs), 130,  
199–200 

National Interagency Fire Center 
(NIFC), 216 

National Land Cover Database  
(NLCD), 218–219 

National-scale forest cover loss  
monitoring
 

approach, 132
 
European Russia forest cover 


change analysis, 139–142 
examples of, 134 
forest cover monitoring in DRC, 

142–145 
National-scale forest degradation 

monitoring, 145–148 
Natural disturbance regimes, 29–30 
Natural resource management, 238–240 
NBR,  see Normalized burn ratio (NBR) 
NCAS,  see National Carbon Accounting 

System (NCAS) 
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NCAS-LCCP, see National Carbon 
Accounting System-Land 
Cover Change Program 
(NCAS-LCCP) 

NDFI, see Normalized difference 
fraction index (NDFI) 

Net land use amplifier effect, 24 
NFIs, see National Forest Inventories 

(NFIs) 
NIFC, see National Interagency Fire 

Center (NIFC) 
Nitrogen deposition, 7, 29 
NLCD, see National Land Cover 

Database (NLCD) 
Non-mechanized logging (NML) 

forest, 175 
Non-parametric supervised 

classification algorithm, 201 
Non-stratified systematic sampling, 114 
Normalization algorithm, see Forest 

normalization 
Normalized burn ratio (NBR), 217 
Normalized difference fraction index 

(NDFI), 184 
North American Carbon Program 

(NACP), 213 
North American Forest Dynamics 

(NAFD), 214–216 

O 

One-stage cluster sampling, 69 

P 

Pan-European forest maps 
applications, 204–205 
data preprocessing methods, 200–201 
future perspectives, 205–206 
mapping approaches, 201–203 
production materials used for, 

198–199 
reference data materials, 199–200 
training data materials, 199 

Parameter, definition of, 67 
Pixel extraction tool, 200 
Population, 67 
Primary sampling unit (PSU), 69 

Probability sample, 70 
PRODES methodology, 158–164 
PRODES project, 50 
Proximal ecosystem services, 8 
PSU,  see Primary sampling unit (PSU) 

R 

Radar imagery, forest monitoring, 51 
Rapid burned area mapping 

burned area polygons, 261 
correlation, 264 
description of, 248 
detection from MODIS sensor, 

249–251 
Rectilinear sampling grid system, 113 
REDD+,  see Reducing emissions from 

deforestation and degradation  
(REDD+) 

Reducing emissions from deforestation 
and degradation (REDD+) 

for forest degradation, 171–172 
forest monitoring, 188–190 

Remote sensing 
advantages of, 65–66 
sampling-based forest monitoring 

applications and evaluative 
studies, 83–85 

design-based inference, 71–72 
desirable criteria for, 73–74, 84–85 
Horvitz–Thompson 

estimator,  72–73 
inclusion probability, 70 
long-term forest monitoring, 

83, 86–87 
model-based inference, 71–72 
one-stage cluster sampling, 69 
probability sample, 70 
sampling application studies,  

75–77 
sampling evaluation studies,  

78–83 
simple random selection, 70 
stratification, 68–69 
stratified random sampling, 70 
systematic selection protocol, 70 
two-phase sampling, 88 
two-stage cluster sampling, 69 
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Remote sensing-based products, 196
 
Remote sensing forest degradation 

classification, 185–188 
mapping selective logging 

combining with GIS, 182–183
 
goals, 179
 
spectral mixture analysis, 


183–185 
visual interpretation method, 

179, 182
 
Repeat pass interferometry, 276
 
Residual terrestrial sink
 

indirect and natural effects, 29–30
 
management effects, 27–29
 
possibility of changes, 30
 
sources and sinks of carbon, 30
 

Response design strategy, 68
 
Reverb tool, 61
 
RMSE, see Root mean square
 

error (RMSE) 
Root mean square error (RMSE), 

263–265 
Russian Academy of Sciences, 247–248 

S 

Sample, definition of, 67
 
Sample mapping, 131
 
Sample space, 71
 
Sampling-based forest monitoring
 

applications and evaluative studies, 
83–85
 

design-based inference, 71–72
 
desirable criteria for, 73–74, 84–85
 
Horvitz–Thompson estimator, 72–73
 
inclusion probability, 70
 
long-term forest monitoring, 


83, 86–87
 
model-based inference, 71–72
 
one-stage cluster sampling, 69
 
probability sample, 70
 
sampling application studies, 75–77
 
sampling evaluation studies, 78–83
 
simple random selection, 70
 
stratification, 68–69
 
stratified random sampling, 70
 
systematic selection protocol, 70
 
two-phase sampling, 88
 
two-stage cluster sampling, 69
 

Sampling concepts
 
parameter, 67
 
sample, 67
 
universe, 67
 

Sampling design strategy, 68
 
Sampling scheme, 114
 
Sampling strategies
 

analysis protocol, 68
 
implementation, 113–114
 
response design, 68
 
sampling design, 68
 
satellite-based forest
 

monitoring, 131
 
SAR, see Synthetic aperture
 

radar (SAR)
 
Satellite-based forest monitoring
 

of forest clearing, 94
 
sampling strategies for, 131
 

Satellite imagery
 
acquisition of, 114–115
 
Landsat, 113
 
preprocessing of, 115–116
 
segmentation, 117–118
 

supervised classification, 119–120 
Savanna-type ecosystem, 156–157 
SBRA product 

annual estimates of burned 
areas, 263
 

burned area polygons, 261
 
correlation, 265
 
description of, 248
 
detection from MODIS sensor, 


252–259 
root mean square error, 265
 

Scale parameter, 117
 
Secondary forests, 284, 286
 
Secondary sampling unit (SSU), 69
 
Segmented satellite imagery,
 

117–118 
supervised classification, 119–120 

Selective logging forest 
process for forest degradation, 171–172 
remote sensing approach 

combining with GIS, 182–183
 
goals, 179
 
spectral mixture analysis, 183–185
 
visual interpretation method, 


179, 182
 
types of, 174–175
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Semi-deciduous tropical forests, 156
 
Semi-evergreen tropical forests, 156
 
Sentinel-1 mission, 302
 
Sentinel-2 mission, 302
 
Separate regression estimator, 82
 
Short-wave-vegetation-index (SWVI), 


255–257
 
Siberia, Boreal forests, 291–292
 
Similarity threshold, 160
 
Simple random selection, 70
 
Single pass interferometry, 276
 
SMA, see Spectral mixture analysis 


(SMA) 
Sparse cover presence/absence 

classification, 239–240 
Spectral mixture analysis (SMA), 

183–185 
Spectral vegetation index, see Short­

wave-vegetation-index 
(SWVI) 

SSU, see Secondary sampling 
unit (SSU)
 

Static forest cover maps, 46
 
Statistical estimation, 123–124
 
Stratification
 

definition of, 68
 
geographic, 235
 
uses of, 68–69
 

Stratified random sampling, 70
 
Stratified sampling, 113–114
 
Stricto sensu, see Cerrado 
Supervised classification, 201
 
SWVI, see Short-wave-vegetation-index 


(SWVI)
 
Synthetic aperture radar (SAR)
 

benefits of, 274
 
changes in forest cover
 

deforestation, 281–283
 
natural disturbances, 283–285
 
secondary forests, 284, 286
 

development
 
observation strategies,
 

278–279 
optical data, 279–281 
sensors for monitoring, 

277–278
 
synergistic uses, 279–281
 

forest monitoring
 
in Amazonia, 292–293
 

in Australia, 292–293
 
boreal forests, 291
 
degradation in Borneo, 289–290
 
rapid detection, 291
 
Xingu watershed, Brazil,
  

287–289 
suitability
 

forest structural diversity, 274
 
interferometry, 276
 
radar modes, 274
 
SAR frequencies, 275–276
 

Systematic acquisition strategy, 279
 
Systematic forest inventories, 19
 
Systematic non-stratified
  

sampling, 114
 
Systematic observation strategy, 


278–279
 
Systematic sample scheme, 114
 
Systematic sampling design, 


70, 80, 84–85
 
Systematic selection protocol, 70
 

T 

Temperate zone forests, 25–26
 
Temporal datasets, 284
 
Terrestrial carbon
 

losses and gains of, 33–34 
measured from space, 31–33 

Time-sequential image composites, 
137–138 

Top-of-atmosphere (TOA) reflectance, 
134, 136
 

Transition matrix, land cover, 122–123
 
Tree cover (TC), 118, 120
 
Trends dataset, 218
 
Trimble, 117
 
Tropical forests, land use change, 25
 
Two-phase sampling, 88
 
Two-stage cluster sampling, 69
 

U 

UF,  see Undisturbed forest (UF)
 
Undisturbed forest (UF), 175
 
UNFCCC,  see United Nations
  

Framework Convention  
on Climate Change  
(UNFCCC) 
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United Nations Framework Convention 

on Climate Change 

(UNFCCC), 130, 188, 212, 230
 

Universe, sampling concept, 67
 
Unsupervised classification, 160–161
 
U.S. Geological Survey (USGS), 


42, 56, 131
 
USGS, see U.S. Geological Survey
 

(USGS)
 
Usual variance estimation, 124
 

V
 

Variability, measurement, 86
 
Vegetation, 156–157
 
VIIRS, see Visible infrared imager 


radiometer suite (VIIRS) 

Index 

Visible infrared imager radiometer 

suite (VIIRS), 106
 

Visualization tool, multi-temporal 

classifications, 121
 

W 

Wall-to-wall mapping strategy, 131
 
Watershed protection, 8
 
Web-enabled Landsat dataset (WELD), 


222–223 
WELD, see Web-enabled Landsat 

dataset (WELD) 

X
 

Xingu watershed, Brazil, 287–289 
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