Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    [Erscheinungsort nicht ermittelbar] : Packt Publishing | Boston, MA : Safari
    ISBN: 9781838989217
    Language: English
    Pages: 1 online resource (330 pages)
    Edition: 1st edition
    Keywords: Electronic books ; local
    Abstract: Get a head start in the world of AI and deep learning by developing your skills with PyTorch Key Features Learn how to define your own network architecture in deep learning Implement helpful methods to create and train a model using PyTorch syntax Discover how intelligent applications using features like image recognition and speech recognition really process your data Book Description Want to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you're starting from scratch. It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures. The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues. By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps. What you will learn Explore the different applications of deep learning Understand the PyTorch approach to building neural networks Create and train your very own perceptron using PyTorch Solve regression problems using artificial neural networks (ANNs) Handle computer vision problems with convolutional neural networks (CNNs) Perform language translation tasks using recurrent neural networks (RNNs) Who this book is for This deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.
    Note: Online resource; Title from title page (viewed July 22, 2020) , Mode of access: World Wide Web.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    [Erscheinungsort nicht ermittelbar] : Packt Publishing | Boston, MA : Safari
    ISBN: 9781839219061
    Language: English
    Pages: 1 online resource (286 pages)
    Edition: 2nd edition
    Keywords: Electronic books ; local
    Abstract: Take a comprehensive and step-by-step approach to understanding machine learning Key Features Discover how to apply the scikit-learn uniform API in all types of machine learning models Understand the difference between supervised and unsupervised learning models Reinforce your understanding of machine learning concepts by working on real-world examples Book Description Machine learning algorithms are an integral part of almost all modern applications. To make the learning process faster and more accurate, you need a tool flexible and powerful enough to help you build machine learning algorithms quickly and easily. With The Machine Learning Workshop, you'll master the scikit-learn library and become proficient in developing clever machine learning algorithms. The Machine Learning Workshop begins by demonstrating how unsupervised and supervised learning algorithms work by analyzing a real-world dataset of wholesale customers. Once you've got to grips with the basics, you'll develop an artificial neural network using scikit-learn and then improve its performance by fine-tuning hyperparameters. Towards the end of the workshop, you'll study the dataset of a bank's marketing activities and build machine learning models that can list clients who are likely to subscribe to a term deposit. You'll also learn how to compare these models and select the optimal one. By the end of The Machine Learning Workshop, you'll not only have learned the difference between supervised and unsupervised models and their applications in the real world, but you'll also have developed the skills required to get started with programming your very own machine learning algorithms. What you will learn Understand how to select an algorithm that best fits your dataset and desired outcome Explore popular real-world algorithms such as K-means, Mean-Shift, and DBSCAN Discover different approaches to solve machine learning classification problems Develop neural network structures using the scikit-learn package Use the NN algorithm to create models for predicting future outcomes Perform error analysis to improve your model's performance Who this book is for The Machine Learning Workshop is perfect for machine learning beginners. You will need Python programming experience, though no prior knowledge of scikit-learn and machine learning is necessary.
    Note: Online resource; Title from title page (viewed July 22, 2020) , Mode of access: World Wide Web.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    [Place of publication not identified] : Packt Publishing
    ISBN: 9781789958386
    Language: English
    Pages: 1 online resource (1 streaming video file (3 hr., 18 min., 45 sec.)) , digital, sound, color
    Keywords: Machine learning ; Python (Computer program language) ; Artificial intelligence ; Electronic videos ; local
    Abstract: "You'll begin by learning how to use the syntax of scikit-learn. You'll study the difference between supervised and unsupervised models, as well as the importance of choosing the appropriate algorithm for each dataset. You'll apply unsupervised clustering algorithm over 1990 US Census dataset, to discover patterns and profiles, and explore the process to solve a supervised machine learning problem. Then, the focus of the course shifts to supervised learning algorithms. You'll learn to implement different supervised algorithms and develop neural network structures using the scikit-learn package. You'll also learn how to perform coherent result analysis to improve performance of the algorithm by tuning hyperparameters. When it finishes, this course would have given you the skills and confidence to start programming machine learning algorithms."--Resource description page.
    Note: Title from resource description page (Safari, viewed April 11, 2019)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    [Place of publication not identified] : Packt Publishing
    ISBN: 9781789801767 , 1789801761
    Language: English
    Pages: 1 online resource (1 volume) , illustrations
    Keywords: Machine learning ; Artificial intelligence ; Electronic books ; Electronic books ; local
    Abstract: With the flexibility and features of scikit-learn and Python, build machine learning algorithms that optimize the programming process and take application performance to a whole new level Key Features Explore scikit-learn uniform API and its application into any type of model Understand the difference between supervised and unsupervised models Learn the usage of machine learning through real-world examples Book Description As machine learning algorithms become popular, new tools that optimize these algorithms are also developed. Machine Learning Fundamentals explains you how to use the syntax of scikit-learn. You'll study the difference between supervised and unsupervised models, as well as the importance of choosing the appropriate algorithm for each dataset. You'll apply unsupervised clustering algorithms over real-world datasets, to discover patterns and profiles, and explore the process to solve an unsupervised machine learning problem. The focus of the book then shifts to supervised learning algorithms. You'll learn to implement different supervised algorithms and develop neural network structures using the scikit-learn package. You'll also learn how to perform coherent result analysis to improve the performance of the algorithm by tuning hyperparameters. By the end of this book, you will have gain all the skills required to start programming machine learning algorithms. What you will learn Understand the importance of data representation Gain insights into the differences between supervised and unsupervised models Explore data using the Matplotlib library Study popular algorithms, such as k-means, Mean-Shift, and DBSCAN Measure model performance through different metrics Implement a confusion matrix using scikit-learn Study popular algorithms, such as Naive-Bayes, Decision Tree, and SVM Perform error analysis to improve the performance of the model Learn to build a comprehensive machine learning program Who this book is for Machine Learning Fundamentals is designed for developers who are new to the field of machine learning and want to learn how to use the scikit-learn library to develop machine learning algorithms. You must have some knowledge and experience in Python programming, but you do not need any prior knowledge of scikit-learn or machine learning algorithms.
    Note: Description based on online resource; title from resource description page (Safari, viewed February 15, 2019)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...