Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISBN: 9783036546926 , 9783036546919
    Language: Undetermined
    Pages: 1 Online-Ressource (190 p.)
    Keywords: Technology: general issues ; History of engineering & technology
    Abstract: Most metallic components and structures are subjected, in service, to random or variable amplitude loadings. There are many examples: vehicles subjected to loadings and vibrations caused by road irregularity and engine, structures exposed to wind, off-shore platforms undergoing wave-loadings, and so on. Just like constant amplitude loadings, random and variable amplitude loadings can make fatigue cracks initiate and propagate, even up to catastrophic failures. Engineers faced with the problem of estimating the structural integrity and the fatigue strength of metallic structures, or their propensity to fracture, usually make use of theoretical, numerical, or experimental approaches. This reprint collects a series of recent scientific contributions aimed at providing an up-to-date overview of approaches and case studies-theoretical, numerical or experimental-on several topics in the field of fracture, fatigue strength, and the structural integrity of metallic components subjected to random or variable amplitude loadings
    Note: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    [Erscheinungsort nicht ermittelbar] : MDPI - Multidisciplinary Digital Publishing Institute
    ISBN: 9783039287703 , 9783039287710
    Language: English
    Pages: 1 Online-Ressource (220 p.)
    Abstract: In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue
    Note: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...